Câu hỏi:

28/06/2022 371

Cho khối chóp S.ABCD có đáy ABCD là hình vuông cạnh 2a. Hình chiếu vuông góc của S trên mặt phẳng \[\left( {ABCD} \right)\] là điểm H thuộc đoạn BD sao cho \[HD = 3HB\]. Biết gọc giữa mặt \[\left( {SCD} \right)\] và mặt phẳng đáy bằng \[45^\circ .\] Khoảng cách giữa hai đường thẳng SA và BD là

Đáp án chính xác

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn sử Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án D

Kẻ \(HI{\rm{ // BC}}\) cắt CD tại I ta có: \(\left\{ \begin{array}{l}C{\rm{D}} \bot {\rm{HI}}\\{\rm{CD}} \bot {\rm{S}}I\end{array} \right.\).

Suy ra góc giữa mặt phẳng \(\left( {SC{\rm{D}}} \right)\) và mặt phẳng đáy là góc \(\widehat {SIH} = 45^\circ \).

Dựng hình bình hành ADBE.

Ta có \(B{\rm{D // }}\left( {SA{\rm{E}}} \right) \Rightarrow d\left( {SA,B{\rm{D}}} \right) = d\left( {B{\rm{D}},(SA{\rm{E}})} \right) = d\left( {B,(SA{\rm{E}})} \right) = d\left( {H,(SA{\rm{E}})} \right)\).

Kẻ \(HJ \bot A{\rm{E}}\) vuông góc tại J ta có \(A{\rm{E}} \bot \left( {SHJ} \right) \Rightarrow \left( {SA{\rm{E}}} \right) \bot \left( {SHJ} \right)\) theo giao tuyến SJ.

Kẻ \(HK \bot {\rm{S}}J\) vuông góc tại K ta có \(HK \bot \left( {SA{\rm{E}}} \right) \Rightarrow HK = d\left( {H,(SA{\rm{E}})} \right)\).

Cho khối chóp S.ABCD có đáy ABCD là hình vuông cạnh 2a. Hình chiếu vuông  (ảnh 1)

Ta có \(HK = \frac{{HJ.H{\rm{S}}}}{{SJ}} = \frac{{HJ.H{\rm{S}}}}{{\sqrt {H{J^2} + H{{\rm{S}}^2}} }}\).

Với \(HJ = AO = a\sqrt 2 ,{\rm{ }}HI = \frac{3}{4}BC = \frac{{3a}}{2}\).

\(H{\rm{S}} = HI = \frac{{3{\rm{a}}}}{2}\).

 Vậy \(HK = \frac{{a\sqrt 2 .\frac{{3{\rm{a}}}}{2}}}{{\sqrt {2{{\rm{a}}^2} + \frac{{9{{\rm{a}}^2}}}{4}} }} = \frac{{3{\rm{a}}\sqrt {34} }}{{17}}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Trong không gian Oxyz, đường thẳng \[d:\left\{ {\begin{array}{*{20}{l}}{x = 2 - t}\\{y = 1 + 2t}\\{z = 3 + t}\end{array}} \right.\] có một vectơ chỉ phương là

Xem đáp án » 27/06/2022 8,227

Câu 2:

Cho hàm số \[f\left( x \right) = {\log _2}\left( {{x^2} + 1} \right)\], tính \[f'\left( 1 \right)\].

Xem đáp án » 27/06/2022 5,571

Câu 3:

Cho hàm số \[f\left( x \right) = \frac{{\left( {m + 1} \right)x + 4}}{{x + 2m}}\] (m là tham số thực). Có bao nhiêu giá trị nguyên của m để hàm số đã cho nghịch biến trên khoảng \[\left( {0; + \infty } \right)\]?

Xem đáp án » 28/06/2022 5,267

Câu 4:

Cho hàm số f(x) liên tục trên \[\mathbb{R}\]\[\int\limits_0^2 {\left( {f\left( x \right) + 3{x^2}} \right){\rm{d}}x} = 10\]. Tính \[\int\limits_0^2 {f(x){\rm{d}}x} \].

Xem đáp án » 27/06/2022 3,131

Câu 5:

Số đường tiệm cận của đồ thị hàm số \[y = \frac{{{x^2} - x + 1}}{{{x^2} - x - 2}}\]

Xem đáp án » 27/06/2022 2,272

Câu 6:

Tính diện tích hình phẳng giới hạn bởi đồ thị các hàm số \[y = - {x^2} + 2x\] \[y = - 3x.\]

Xem đáp án » 27/06/2022 1,609

Câu 7:

Cho hàm số f(x) có đạo hàm liên tục trên \[\mathbb{R}.\] Biết \[f\left( 2 \right) = 3\] \[\int\limits_{ - 1}^3 {f\left( {\sqrt {x + 1} } \right)dx} = 4,\] khi đó \[\int\limits_0^2 {{x^2}f'\left( x \right)dx} \] bằng

Xem đáp án » 28/06/2022 1,327

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store