Câu hỏi:
28/06/2022 919Trong không gian với hệ trục tọa độ Oxyz, cho điểm \[M\left( { - 3;3; - 3} \right)\] thuộc mặt phẳng \[\left( \alpha \right):2x - - 2y + z + 15 = 0\] và mặt cầu \[\left( S \right):{(x - 2)^2} + {(y - 3)^2} + {(z - 5)^2} = 100\]. Đường thẳng Δ qua M, nằm trên mặt phẳng (α) cắt (S) tại A, B sao cho độ dài AB lớn nhất. Viết phương trình đường thẳng Δ.
Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án D
Mặt cầu \(\left( S \right)\) có tâm \(I\left( {2;3;5} \right)\), bán kính \(R = 10\).
Vì \(d\left( {I,(P)} \right) = 6 < R = 10 \Rightarrow \left( P \right)\) cắt \(\left( S \right)\) theo giao tuyến là đường tròn \(\left( C \right)\) có tâm E là hình chiếu vuông góc của I lên \(\left( P \right)\) và có bán kính \(r = \sqrt {{R^2} - {d^2}\left( {I,(P)} \right)} = 8\).
Gọi \(\left( d \right)\) là đường thẳng đi qua I và vuông góc với \(\left( P \right)\), nên nhận VTPT của \(\left( P \right)\) làm VTCP.
Phương trình \(\left( d \right):\left\{ \begin{array}{l}x = 2 + 2m\\y = 3 - 2m\\z = 5 + m\end{array} \right.,\left( {m \in \mathbb{R}} \right)\). Khi đó \(\left( d \right) \cap \left( P \right) = E\left( {2 + 2m;3 - 2m;5 + m} \right)\).
Ta có \(E \in \left( P \right) \Rightarrow m = - 2 \Rightarrow E\left( { - 2;7;3} \right)\).
Vì \(ME = \sqrt {53} < 8 \Rightarrow E\) nằm trong đường tròn \(\left( C \right)\). Vậy AB lớn nhất khi AB là đường kính của đường tròn \(\left( C \right)\), khi đó đường thẳng \(\Delta \) chính là đường thẳng ME.
Vậy \(\Delta \) qua \(M\left( { - 3;3; - 3} \right)\), nhận \(\overrightarrow {ME} = \left( {1;4;6} \right)\) làm VTCP.
Vậy phương trình đường thẳng \(\left( \Delta \right):\frac{{x + 3}}{1} = \frac{{y - 3}}{4} = \frac{{z + 3}}{6}\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Trong không gian Oxyz, đường thẳng \[d:\left\{ {\begin{array}{*{20}{l}}{x = 2 - t}\\{y = 1 + 2t}\\{z = 3 + t}\end{array}} \right.\] có một vectơ chỉ phương là
Câu 2:
Cho hàm số \[f\left( x \right) = {\log _2}\left( {{x^2} + 1} \right)\], tính \[f'\left( 1 \right)\].
Câu 3:
Cho hàm số \[f\left( x \right) = \frac{{\left( {m + 1} \right)x + 4}}{{x + 2m}}\] (m là tham số thực). Có bao nhiêu giá trị nguyên của m để hàm số đã cho nghịch biến trên khoảng \[\left( {0; + \infty } \right)\]?
Câu 4:
Cho hàm số f(x) liên tục trên \[\mathbb{R}\] và \[\int\limits_0^2 {\left( {f\left( x \right) + 3{x^2}} \right){\rm{d}}x} = 10\]. Tính \[\int\limits_0^2 {f(x){\rm{d}}x} \].
Câu 5:
Số đường tiệm cận của đồ thị hàm số \[y = \frac{{{x^2} - x + 1}}{{{x^2} - x - 2}}\] là
Câu 6:
Tính diện tích hình phẳng giới hạn bởi đồ thị các hàm số \[y = - {x^2} + 2x\] và \[y = - 3x.\]
Câu 7:
Cho hàm số f(x) có đạo hàm liên tục trên \[\mathbb{R}.\] Biết \[f\left( 2 \right) = 3\] và \[\int\limits_{ - 1}^3 {f\left( {\sqrt {x + 1} } \right)dx} = 4,\] khi đó \[\int\limits_0^2 {{x^2}f'\left( x \right)dx} \] bằng
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 1)
30 Đề thi thử thpt quốc gia môn Toán có lời giải chi tiết mới nhất (Đề số 1)
CÂU TRẮC NGHIỆM ĐÚNG SAI
Đề minh họa THPT Quốc gia môn Toán năm 2023 có đáp án
44 bài tập Đạo hàm và khảo sát hàm số có lời giải
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 3)
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 2)
30 đề thi THPT Quốc gia môn Toán năm 2022 có lời giải (đề 23)
về câu hỏi!