Câu hỏi:

28/06/2022 618

Với mọi số thực \[x,y\] thỏa điều kiện \[{\log _2}\left( {\frac{{xy + 1}}{{{x^2} + {y^2}}}} \right) = 2\left( {{x^2} + {y^2}} \right) - xy\]. Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của biểu thức \[P = \frac{{{x^4} + {y^4}}}{{2xy + 1}}\]. Tính giá trị biểu thức \[Q = 15m + 2{\log _2}M\].

Đáp án chính xác

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

Đề toán-lý-hóa Đề văn-sử-địa Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án C

Điều kiện: \(xy + 1 > 0\).

\({\log _2}\left( {\frac{{xy + 1}}{{{x^2} + {y^2}}}} \right) = 2\left( {{x^2} + {y^2}} \right) - xy \Leftrightarrow {\log _2}\left[ {\frac{{xy + 1}}{{2\left( {{x^2} + {y^2}} \right)}}} \right] = 2\left( {{x^2} + {y^2}} \right) - xy - 1\)

\( \Leftrightarrow {\log _2}\left( {xy + 1} \right) + \left( {xy + 1} \right) = {\log _2}\left[ {2\left( {{x^2} + {y^2}} \right)} \right] + 2\left( {{x^2} + {y^2}} \right)\).

Xét hàm số: \(f\left( t \right) = {\log _2}t + t{\rm{ }}\left( {t > 0} \right)\)

\(f'\left( t \right) = \frac{1}{{t\ln 2}} + 1 > 0{\rm{ }}\forall t > 0 \Rightarrow \)hàm số đồng biến trên \(\left( {0; + \infty } \right)\).

Do đó: \(f\left( {xy + 1} \right) = f\left( {2\left( {{x^2} + {y^2}} \right)} \right) \Rightarrow xy + 1 = 2\left( {{x^2} + {y^2}} \right)\)

Ta có: \( - \left( {\frac{{{x^2} + {y^2}}}{2}} \right) \le xy \le \frac{{{x^2} + {y^2}}}{2} \Leftrightarrow - \left( {\frac{{{x^2} + {y^2}}}{2}} \right) + 1 \le 2\left( {{x^2} + {y^2}} \right) \le \left( {\frac{{{x^2} + {y^2}}}{2}} \right) + 1 \Leftrightarrow \frac{2}{5} \le {x^2} + {y^2} \le \frac{2}{3}\).

Khi đó: \(P = \frac{{{x^4} + {y^4}}}{{2{\rm{x}}y + 1}} = \frac{{{{\left( {{x^2} + {y^2}} \right)}^2} - 2{{\left( {xy} \right)}^2}}}{{2{\rm{x}}y + 1}}\).

Thay \(xy = 2\left( {{x^2} + {y^2}} \right) - 1\), đặt \(t = {x^2} + {y^2}\) rút gọn ta được: \(P\left( t \right) = \frac{{ - 7{t^2} + 8t - 2}}{{4t - 1}}\) với \(\frac{2}{5} \le t \le \frac{2}{3}\).

\(P'\left( t \right) = \frac{{ - 28{t^2} + 14t}}{{{{\left( {4t - 1} \right)}^2}}} = 0 \Leftrightarrow \left[ \begin{array}{l}t = 0\\t = \frac{1}{2}\end{array} \right.\).

Lập bảng biến thiên dễ thấy: \(\max P = P\left( {\frac{1}{2}} \right) = \frac{1}{4},{\rm{ }}\min P = P\left( {\frac{2}{5}} \right) = P\left( {\frac{2}{3}} \right) = \frac{2}{{15}}\).

Do đó: \(m = \frac{2}{{15}},M = \frac{1}{4} \Rightarrow Q = 15m + 2{\log _2}M = - 2\).

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Trong không gian Oxyz, đường thẳng \[d:\left\{ {\begin{array}{*{20}{l}}{x = 2 - t}\\{y = 1 + 2t}\\{z = 3 + t}\end{array}} \right.\] có một vectơ chỉ phương là

Xem đáp án » 27/06/2022 11,636

Câu 2:

Cho hàm số \[f\left( x \right) = {\log _2}\left( {{x^2} + 1} \right)\], tính \[f'\left( 1 \right)\].

Xem đáp án » 27/06/2022 7,825

Câu 3:

Cho hàm số f(x) liên tục trên \[\mathbb{R}\]\[\int\limits_0^2 {\left( {f\left( x \right) + 3{x^2}} \right){\rm{d}}x} = 10\]. Tính \[\int\limits_0^2 {f(x){\rm{d}}x} \].

Xem đáp án » 27/06/2022 5,502

Câu 4:

Cho hàm số \[f\left( x \right) = \frac{{\left( {m + 1} \right)x + 4}}{{x + 2m}}\] (m là tham số thực). Có bao nhiêu giá trị nguyên của m để hàm số đã cho nghịch biến trên khoảng \[\left( {0; + \infty } \right)\]?

Xem đáp án » 28/06/2022 5,434

Câu 5:

Tính diện tích hình phẳng giới hạn bởi đồ thị các hàm số \[y = - {x^2} + 2x\] \[y = - 3x.\]

Xem đáp án » 27/06/2022 3,394

Câu 6:

Số đường tiệm cận của đồ thị hàm số \[y = \frac{{{x^2} - x + 1}}{{{x^2} - x - 2}}\]

Xem đáp án » 27/06/2022 2,554

Câu 7:

 Trong không gian với hệ trục tọa độ Oxyz, cho điểm \[M\left( { - 3;3; - 3} \right)\] thuộc mặt phẳng \[\left( \alpha \right):2x - - 2y + z + 15 = 0\] và mặt cầu \[\left( S \right):{(x - 2)^2} + {(y - 3)^2} + {(z - 5)^2} = 100\]. Đường thẳng Δ qua M, nằm trên mặt phẳng (α) cắt (S) tại A, B sao cho độ dài AB lớn nhất. Viết phương trình đường thẳng Δ.

Xem đáp án » 28/06/2022 1,999
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua