Câu hỏi:

28/06/2022 374

Cho hàm số bậc ba \[y = f\left( x \right)\] liên tục và có đồ thị như hình vẽ.

Cho hàm số bậc ba y=f(x)  liên tục và có đồ thị như hình vẽ. (ảnh 1)

Số giá trị nguyên của tham số m để phương trình \[\frac{{4{m^3} + m}}{{\sqrt {2{f^2}\left( x \right) + 5} }} = {f^2}\left( x \right) + 3\] có đúng 4 nghiệm phân biệt là

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án A

Ta có: \(\frac{{4{m^3} + m}}{{\sqrt {2{f^2}\left( x \right) + 5} }} = {f^2}\left( x \right) + 3 \Leftrightarrow 4{m^3} + m = \left[ {{f^2}\left( x \right) + 3} \right]\sqrt {2{f^2}\left( x \right) + 5} \).

\( \Leftrightarrow 8{m^3} + 2m = \left( {2{f^2}\left( x \right) + 6} \right)\sqrt {2{f^2}\left( x \right) + 5} \;\)

\( \Leftrightarrow 8{m^3} + 2m = \left( {{{\sqrt {2{f^2}\left( x \right) + 5} }^3}} \right) + \sqrt {2{f^2}\left( x \right) + 5} \) (*)

Xét hàm số: \(f\left( t \right) = {t^3} + t \Rightarrow f'\left( t \right) = 3{t^2} + 1 > 0\left( {\forall t \in \mathbb{R}} \right) \Rightarrow f\left( t \right)\) đồng biến trên \(\mathbb{R}\).

Do đó \(m = \frac{{\sqrt 5 }}{2}\).

\( \Leftrightarrow \left\{ \begin{array}{l}m > 0\\4{m^2} = 2{f^2}\left( x \right) + 5\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m \ge \frac{{\sqrt 5 }}{2}\\f\left( x \right) = \pm \sqrt {\frac{{4{m^2} - 5}}{2}} \end{array} \right.\) (*)

TH1: Với thì phương trình đã cho \( \Leftrightarrow f\left( x \right) = 0\) có 2 nghiệm.

TH2: Với \(m > \frac{{\sqrt 5 }}{2}\) thì phương trình \(f\left( x \right) = - \sqrt {\frac{{4{m^2} - 5}}{2}} \) luôn có 1 nghiệm, như vậy để phương trình đã cho có đúng 4 nghiệm thì phương trình \(f\left( x \right) = \sqrt {\frac{{4{m^2} - 5}}{2}} \) có 3 nghiệm phân biệt.

Khi đó \(0 < \sqrt {\frac{{4{m^2} - 5}}{2}} < 4 \Leftrightarrow 4{m^2} - 5 < 32 \Leftrightarrow - \sqrt {\frac{{37}}{4}} < m < \sqrt {\frac{{37}}{4}} \).

Vậy \(\frac{{\sqrt 5 }}{2} < m < \sqrt {\frac{{37}}{4}} \) là giá trị cần tìm. Kết hợp \(m \in \mathbb{Z} \Rightarrow m = \left\{ {2;3} \right\}\).

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Trong không gian Oxyz, đường thẳng \[d:\left\{ {\begin{array}{*{20}{l}}{x = 2 - t}\\{y = 1 + 2t}\\{z = 3 + t}\end{array}} \right.\] có một vectơ chỉ phương là

Xem đáp án » 27/06/2022 13,780

Câu 2:

Cho hàm số \[f\left( x \right) = {\log _2}\left( {{x^2} + 1} \right)\], tính \[f'\left( 1 \right)\].

Xem đáp án » 27/06/2022 10,476

Câu 3:

Cho hàm số f(x) liên tục trên \[\mathbb{R}\]\[\int\limits_0^2 {\left( {f\left( x \right) + 3{x^2}} \right){\rm{d}}x} = 10\]. Tính \[\int\limits_0^2 {f(x){\rm{d}}x} \].

Xem đáp án » 27/06/2022 6,208

Câu 4:

Cho hàm số \[f\left( x \right) = \frac{{\left( {m + 1} \right)x + 4}}{{x + 2m}}\] (m là tham số thực). Có bao nhiêu giá trị nguyên của m để hàm số đã cho nghịch biến trên khoảng \[\left( {0; + \infty } \right)\]?

Xem đáp án » 28/06/2022 5,564

Câu 5:

Tính diện tích hình phẳng giới hạn bởi đồ thị các hàm số \[y = - {x^2} + 2x\] \[y = - 3x.\]

Xem đáp án » 27/06/2022 4,052

Câu 6:

Tích tất cả các nghiệm của phương trình \[{3^{{x^2} + x}} = 9\] bằng

Xem đáp án » 27/06/2022 3,366

Câu 7:

Số đường tiệm cận của đồ thị hàm số \[y = \frac{{{x^2} - x + 1}}{{{x^2} - x - 2}}\]

Xem đáp án » 27/06/2022 2,763
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay