Câu hỏi:

28/06/2022 744

Cho khối chóp S.ABCD có đáy ABCD là tứ giác lồi, tam giác ABD đều cạnh a, tam giác BCD cân tại \[C,{\mkern 1mu} \widehat {BCD} = {120^0},{\mkern 1mu} SA \bot \left( {ABCD} \right){\mkern 1mu} ,{\mkern 1mu} SA = a.\] Mặt phẳng (P) đi qua A và vuông góc với SC cắt các cạnh \[SB,SC,SD\] lần lượt tại \[M,N,P.\] Tính thể tích khối chóp \[S.AMNP\]

Đáp án chính xác

Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (chỉ từ 110k).

Mua bộ đề Hà Nội Mua bộ đề Tp. Hồ Chí Minh Mua đề Bách Khoa

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án B

Cho khối chóp S.ABCD có đáy ABCD là tứ giác lồi, tam giác ABD đều cạnh a, tam giác BCD (ảnh 1)

Ta có: \(\widehat {AB{\rm{D}}} = \widehat {A{\rm{D}}B} = 60^\circ ,{\rm{ }}\widehat {CB{\rm{D}}} = \widehat {C{\rm{D}}B} = 30^\circ \)

Suy ra \(\widehat {ABC} = \widehat {A{\rm{D}}C} = 90^\circ \).

Suy ra \(BC \bot AB\), mà \(BC \bot {\rm{S}}A \Rightarrow CB \bot \left( {SAB} \right)\)

Dựng \(AM \bot {\rm{S}}B\), ta có \(AM \bot BC \Rightarrow AM \bot {\rm{S}}C\).

Tương tự ta có \(AP \bot {\rm{SD}}\).

Dựng \(AN \bot {\rm{S}}C\) theo tính chất đối xứng thì

\(\frac{{{V_{S.AMNP}}}}{{{V_{S.ABC{\rm{D}}}}}} = \frac{{{V_{S.AMN}}}}{{{V_{S.ABC}}}} = \frac{{SM}}{{SB}}.\frac{{SN}}{{SC}}\)

Mặt khác \(SA = SM.SB \Rightarrow \frac{{SM}}{{SB}} = \frac{{S{A^2}}}{{S{B^2}}} = \frac{1}{2}\)

Tương tự ta có \(\frac{{SN}}{{SC}} = \frac{{S{A^2}}}{{S{C^2}}} = \frac{1}{{1 + A{C^2}}}\)

Trong đó \(AI = \frac{{a\sqrt 3 }}{2},CI = IB\tan 30^\circ = \frac{{a\sqrt 3 }}{6} \Rightarrow AC = \frac{2}{3}a\sqrt 3 \Rightarrow \frac{{SN}}{{SC}} = \frac{3}{7}\)

Suy ra \(\frac{{{V_{S.AMNP}}}}{{{V_{S.ABC{\rm{D}}}}}} = \frac{1}{2}.\frac{3}{7} = \frac{3}{{14}},{S_{ABC{\rm{D}}}} = \frac{1}{2}AC.B{\rm{D}} = \frac{{{a^2}\sqrt 3 }}{3}\)

\( \Rightarrow {V_{S.AMNP}} = \frac{3}{{14}}{V_{S.ABC{\rm{D}}}} = \frac{3}{{14}}.\frac{1}{3}.SA.\frac{{{a^2}\sqrt 3 }}{3} = \frac{{{a^2}\sqrt 3 }}{{42}}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Trong không gian Oxyz, đường thẳng \[d:\left\{ {\begin{array}{*{20}{l}}{x = 2 - t}\\{y = 1 + 2t}\\{z = 3 + t}\end{array}} \right.\] có một vectơ chỉ phương là

Xem đáp án » 27/06/2022 8,565

Câu 2:

Cho hàm số \[f\left( x \right) = {\log _2}\left( {{x^2} + 1} \right)\], tính \[f'\left( 1 \right)\].

Xem đáp án » 27/06/2022 5,740

Câu 3:

Cho hàm số \[f\left( x \right) = \frac{{\left( {m + 1} \right)x + 4}}{{x + 2m}}\] (m là tham số thực). Có bao nhiêu giá trị nguyên của m để hàm số đã cho nghịch biến trên khoảng \[\left( {0; + \infty } \right)\]?

Xem đáp án » 28/06/2022 5,301

Câu 4:

Cho hàm số f(x) liên tục trên \[\mathbb{R}\]\[\int\limits_0^2 {\left( {f\left( x \right) + 3{x^2}} \right){\rm{d}}x} = 10\]. Tính \[\int\limits_0^2 {f(x){\rm{d}}x} \].

Xem đáp án » 27/06/2022 3,538

Câu 5:

Số đường tiệm cận của đồ thị hàm số \[y = \frac{{{x^2} - x + 1}}{{{x^2} - x - 2}}\]

Xem đáp án » 27/06/2022 2,406

Câu 6:

Tính diện tích hình phẳng giới hạn bởi đồ thị các hàm số \[y = - {x^2} + 2x\] \[y = - 3x.\]

Xem đáp án » 27/06/2022 1,803

Câu 7:

Cho hàm số f(x) có đạo hàm liên tục trên \[\mathbb{R}.\] Biết \[f\left( 2 \right) = 3\] \[\int\limits_{ - 1}^3 {f\left( {\sqrt {x + 1} } \right)dx} = 4,\] khi đó \[\int\limits_0^2 {{x^2}f'\left( x \right)dx} \] bằng

Xem đáp án » 28/06/2022 1,377

Bình luận


Bình luận