Câu hỏi:

28/06/2022 471 Lưu

Trong không gian tọa độ Oxyz, cho điểm \[A\left( {1;1; - 2} \right)\] thuộc mặt cầu \[\left( S \right):\;{x^2} + {\left( {y + 1} \right)^2} + {z^2} = 9.\] Từ điểm A kẻ 3 dây cung \[AB,\;AC,\;AD\] của mặt cầu (S) có độ dài bằng nhau và đôi một tạo với nhau góc \[{60^0}.\] Mặt phẳng \[\left( {BCD} \right)\] có phương trình là \[x + by + cz + d = 0.\] Khi đó \[b + c + d\] bằng

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án A

Trong không gian tọa độ Oxyz, cho điểm A(1;1;-2)  thuộc mặt cầu  (ảnh 1)

Ta có \[AB = AC = A{\rm{D}}\] và đôi một tạo với nhau góc \(60^\circ \) nên tứ giác ABCD đều. Gọi M, N lần lượt là trung điểm của ABCD thì trọng tâm tứ diện ABCD là trung điểm của MN và cũng là tâm mặt cầu ngoại tiếp tứ diện ABCD ta có \(I\left( {0; - 1;0} \right)\).

Gọi G là trọng tâm tam giác BCD và dựng \(MK{\rm{ // AG}}\) (hình vẽ).

Ta có: \(MK = 2GI\)\(AG = 2MK\) (tính chất đường trung bình)

Suy ra \(AG = 4IG \Rightarrow \overrightarrow {AG} = 4\overrightarrow {IG} \Rightarrow \left\{ \begin{array}{l}{x_G} - 1 = 4\left( {{x_G} - 0} \right)\\{y_G} - 1 = 4\left( {{y_G} + 1} \right)\\{z_G} + 2 = 4\left( {{z_G} - 0} \right)\end{array} \right.\)

\( \Rightarrow G\left( { - \frac{1}{3}; - \frac{5}{3};\frac{2}{3}} \right) \Rightarrow \left( {BC{\rm{D}}} \right)\) qua G và có VTPT là \(\overrightarrow n = \overrightarrow {AI} \left( { - 1; - 2;2} \right) = - \left( {1;2; - 2} \right)\)

\( \Rightarrow \left( {BC{\rm{D}}} \right):x + 2y - 2{\rm{z}} + 5 = 0\) suy ra \(b = 2,c = - 2,d = 5 \Rightarrow b + c + d = 5\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Đáp án D

Đường thẳng d có một VTCP là \(\overrightarrow u = \left( { - 1;2;1} \right)\).

Câu 2

Lời giải

Đáp án D

Tập xác định: \(D = \mathbb{R}\).

\(f'\left( x \right) = \frac{{2{\rm{x}}}}{{\left( {{x^2} + 1} \right)\ln 2}} \Rightarrow f'\left( 1 \right) = \frac{{2.1}}{{\left( {{1^2} + 1} \right)\ln 2}} = \frac{1}{{\ln 2}}\).

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP