Trong không gian tọa độ Oxyz, cho điểm \[A\left( {1;1; - 2} \right)\] thuộc mặt cầu \[\left( S \right):\;{x^2} + {\left( {y + 1} \right)^2} + {z^2} = 9.\] Từ điểm A kẻ 3 dây cung \[AB,\;AC,\;AD\] của mặt cầu (S) có độ dài bằng nhau và đôi một tạo với nhau góc \[{60^0}.\] Mặt phẳng \[\left( {BCD} \right)\] có phương trình là \[x + by + cz + d = 0.\] Khi đó \[b + c + d\] bằng
Quảng cáo
Trả lời:
Đáp án A

Ta có \[AB = AC = A{\rm{D}}\] và đôi một tạo với nhau góc \(60^\circ \) nên tứ giác ABCD đều. Gọi M, N lần lượt là trung điểm của AB và CD thì trọng tâm tứ diện ABCD là trung điểm của MN và cũng là tâm mặt cầu ngoại tiếp tứ diện ABCD ta có \(I\left( {0; - 1;0} \right)\).
Gọi G là trọng tâm tam giác BCD và dựng \(MK{\rm{ // AG}}\) (hình vẽ).
Ta có: \(MK = 2GI\) và \(AG = 2MK\) (tính chất đường trung bình)
Suy ra \(AG = 4IG \Rightarrow \overrightarrow {AG} = 4\overrightarrow {IG} \Rightarrow \left\{ \begin{array}{l}{x_G} - 1 = 4\left( {{x_G} - 0} \right)\\{y_G} - 1 = 4\left( {{y_G} + 1} \right)\\{z_G} + 2 = 4\left( {{z_G} - 0} \right)\end{array} \right.\)
\( \Rightarrow G\left( { - \frac{1}{3}; - \frac{5}{3};\frac{2}{3}} \right) \Rightarrow \left( {BC{\rm{D}}} \right)\) qua G và có VTPT là \(\overrightarrow n = \overrightarrow {AI} \left( { - 1; - 2;2} \right) = - \left( {1;2; - 2} \right)\)
\( \Rightarrow \left( {BC{\rm{D}}} \right):x + 2y - 2{\rm{z}} + 5 = 0\) suy ra \(b = 2,c = - 2,d = 5 \Rightarrow b + c + d = 5\).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án D
Đường thẳng d có một VTCP là \(\overrightarrow u = \left( { - 1;2;1} \right)\).
Lời giải
Đáp án D
Tập xác định: \(D = \mathbb{R}\).
\(f'\left( x \right) = \frac{{2{\rm{x}}}}{{\left( {{x^2} + 1} \right)\ln 2}} \Rightarrow f'\left( 1 \right) = \frac{{2.1}}{{\left( {{1^2} + 1} \right)\ln 2}} = \frac{1}{{\ln 2}}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.