Câu hỏi:

28/06/2022 267 Lưu

Cho số phức z thỏa mãn \[\left| {\frac{{z - 1}}{{z + 3i}}} \right| = \frac{1}{{\sqrt 2 }}.\] Tìm giá trị lớn nhất của biểu thức \[P = \left| {z + i} \right| + 2\left| {\bar z - 4 + 7i} \right|.\]

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án B

Ta có: \(\left| {\frac{{z - 1}}{{z + 3i}}} \right| = \frac{1}{{\sqrt 2 }} \Leftrightarrow \sqrt 2 \left| {z - 1} \right| = \left| {z + 3i} \right|\). Gọi M là điểm biểu diễn số phức z, tập hợp điểm biểu diễn số phức z là đường tròn có phương trình: \({\left( {x - 2} \right)^2} + {\left( {y - 3} \right)^2} = 20{\rm{ }}\left( C \right)\).

\(P = \left| {z + i} \right| + 2\left| {\overline z - 4 + 7i} \right| = \left| {z + i} \right| + 2\left| {z - 4 - 7i} \right|\), \(A\left( {0; - 1} \right),B\left( {4;7} \right)\) lần lượt biểu diễn cho 2 số phức

\({z_1} = - i,{\rm{ }}{{\rm{z}}_2} = 4 + 7i\). Ta có: \(A,B \in \left( C \right),AB = 4\sqrt 5 = 2{\rm{R}}\) nên AB là đường kính đường tròn

\(\left( C \right) \Rightarrow M{A^2} + M{B^2} = A{B^2} = 80\).

Mặt khác: \(P = \left| {z + i} \right| + 2\left| {\overline z - 4 + 7i} \right| = \left| {z + i} \right| + 2\left| {z - 4 - 7i} \right| = MA + 2MB \le \sqrt {5\left( {M{A^2} + M{B^2}} \right)} = 20\), dấu “=” xảy ra khi \(MB = 2MA\). Vậy \(\max P = 20\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Đáp án D

Đường thẳng d có một VTCP là \(\overrightarrow u = \left( { - 1;2;1} \right)\).

Câu 2

Lời giải

Đáp án D

Tập xác định: \(D = \mathbb{R}\).

\(f'\left( x \right) = \frac{{2{\rm{x}}}}{{\left( {{x^2} + 1} \right)\ln 2}} \Rightarrow f'\left( 1 \right) = \frac{{2.1}}{{\left( {{1^2} + 1} \right)\ln 2}} = \frac{1}{{\ln 2}}\).

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP