Câu hỏi:

14/01/2020 15,383

Cho hình chóp S.ABCD có đường cao SA = 2a, đáy ABCD là hình thang vuông ở A và D, AB=2aAD = CD = a. Khoảng cách từ điểm A đến mặt phẳng (SBC) bằng

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án là A

Gọi K là trung điểm AB  => KA=KB=a

  Dễ thấy tứ giác ADCK là hình vuông => CK=a

Tam giác ACB có trung tuyến CK=12AB Þ Tam giác ACB vuông tại C

Trong (SAC), từ A hạ AHSC tại H  =>AH(SBC)

Tam giác SAC vuông tại

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án là B

Cách 1. Xác định và tính góc giữa hai đường thẳng.

 Tam giác ABC vuông tại A

Do SA=SB=SC nên nếu gọi H là hình chiếu vuông góc của S lên (ABC) thì H là tâm đường tròn ngoại tiếp tam giác ABC mà tam giác ABC vuông tại A  nên H là trung điểm của  BC.

Dựng hình bình hành  ABCD. Khi đó:(AB,SC)=(CD,SC) và CD=AB=a. Tam giác SBC vuông tại S

có SH là đường trùng tuyến nên SH=a22

Tam giác CDH có 

theo định lý Cô- Sin ta có

Tam giác SHD vuông tại H nên

Tam giác SCD có:

Cách 2. (Hay phù hợp với bài này) Ứng dụng tích vô hướng.

Theo giả thiết có

Ta có 

Suy ra: 

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP