Câu hỏi:
28/06/2022 314Cho cấp số cộng có \[{u_1} = - 3;{u_{10}} = 24\]. Tìm công sai d?
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 70k).
Quảng cáo
Trả lời:
Đáp án D
Phương pháp
Sử dụng công thức: Cho cấp số cộng có số hạng đầu \({u_1}\) và công sai d thì số hạng thứ \(n\left( {n > 1} \right)\) là
\({u_n} = {u_1} + \left( {n - 1} \right)d.\)
Từ đó ta tìm được công sai d.
Cách giải
Ta có \({u_{10}} = {u_1} + 9d \Leftrightarrow - 3 + 9d = 24 \Leftrightarrow 9d = 27 \Leftrightarrow d = 3.\)
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Số các giá trị nguyên của m để hàm số \[f\left( x \right) = \frac{1}{3}{x^3} - \left( {m + 50} \right){x^2} + \left( {{m^2} + 100m} \right)x + 2020m\] nghịch biến trên \[\left( {7;13} \right)\] là
Câu 2:
Cho khối chóp S.ABCD có đáy là hình vuông cạnh \[2a\], cạnh bên \[SA\] vuông góc với mặt phẳng đáy, mặt bên \[(SBC)\] tạo với đáy một góc \[{30^0}\].Thể tích của khối chóp đã cho bằng
Câu 3:
Cho phương trình \[{\log _3}^2\left( {9x} \right) - \left( {m + 5} \right){\log _3}x + 3m - 10 = 0\]. Số giá trị nguyên của tham số m để phương trình đã cho có hai nghiệm phân biệt thuộc \[\left[ {1;81} \right]\] là
Câu 4:
Biết \[\int\limits_4^5 {\frac{{dx}}{{{x^2} + 3x + 2}} = a\ln 2 + b\ln 3 + c\ln 5 + d\ln 7} \] với \[a,b,c,d\] là các số nguyên. Tính \[P = ab + cd.\]
Câu 6:
Trong không gian với hệ tọa độ Oxyz, cho \[\vec a = \vec i + 3\vec j - 2\vec k\]. Tọa độ của vectơ \[\vec a\] là
Câu 7:
Cho hàm số \[y = f\left( x \right)\] liên tục có đạo hàm trên \[\mathbb{R},\] và có đồ thị như hình vẽ. Kí hiệu \[g\left( x \right) = f\left( {2\sqrt {2x} + \sqrt {1 - x} } \right) + m.\] Tìm điều kiện của tham số m để \[\mathop {Max}\limits_{\left[ {0;1} \right]} g\left( x \right) > 2\mathop {Min}\limits_{\left[ {0;1} \right]} g\left( x \right).\]
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 1)
50 bài tập Nguyên hàm, tích phân và ứng dụng có lời giải
30 Đề thi thử thpt quốc gia môn Toán có lời giải chi tiết mới nhất (Đề số 1)
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 2)
CÂU TRẮC NGHIỆM ĐÚNG SAI
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 3)
Đề minh họa THPT Quốc gia môn Toán năm 2023 có đáp án
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 5)
về câu hỏi!