Câu hỏi:

28/06/2022 246 Lưu

Gọi V là thể tích của hình lập phương \[ABCD.A'B'C'D'\], \[{V_1}\] là thể tích tứ diện \[A'ABD\]. Hệ thức nào sau đây đúng?

A. \[V = 3{V_1}.\]    
B. \[V = 4{V_1}.\]     
C. \[V = 6{V_1}.\]    
D. \[V = 2{V_1}.\]

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án C

Gọi V là thể tích của hình lập phương ABCD.A'B'C'D' (ảnh 1)

Gọi a là cạnh của hình lập phương

Khi đó, ta có: \(V = {a^3}\)\({V_1} = \frac{1}{3}.\frac{1}{2}{a^2}.a = \frac{{{a^3}}}{6}\)

Vậy \(V = 6{V_1}\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. 95                         
B. 94                         
C. 96                         
D. Vô số

Lời giải

Đáp án A

Tập xác định: \(D = \mathbb{R}.\)

Ta có, \(f'\left( x \right) = {x^2} - 2\left( {m + 50} \right)x + {m^2} + 100m\)

Để hàm số nghịch biến trên \(\left( {7;13} \right)\) thì phương trình \(f'\left( x \right) = 0\) phải có hai nghiệm \({x_1},{x_2}\) thỏa mãn \(\left\{ \begin{array}{l}{x_1} \le 7\\{x_2} \ge 13\end{array} \right..\)

Từ đó, ta có hệ phương trình: \(\left\{ \begin{array}{l}\Delta ' = {\left[ { - \left( {m + 50} \right)} \right]^2} - \left( {{m^2} + 100m} \right) = 2500 > 0,\forall m\\{x_1} = m \le 7\\{x_2} = m + 100 \ge 13\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}m \le 7\\m \ge - 87\end{array} \right. \Leftrightarrow - 87 \le m \le 7\)

Do m nguyên, cho nên tập hợp các giá trị của m là: \(S = \left\{ { - 87; - 86;...;6;7} \right\}\)

Có 95 giá trị nguyên của m thỏa mãn.

Câu 2

A. \[P = - 5.\]            
B. \[P = 5.\]                
C. \[P = - 4.\]            
D. \[P = 2.\]

Lời giải

Đáp án B

Ta có \(\int\limits_4^5 {\frac{{dx}}{{{x^2} + 3x + 2}} = \int\limits_4^5 {\left( {\frac{1}{{x + 1}} - \frac{1}{{x + 2}}} \right)dx} = \ln \left| {\frac{{x + 1}}{{x + 2}}} \right|\left| {_{\scriptstyle\atop\scriptstyle4}^{\scriptstyle5\atop\scriptstyle}} \right. = 2\ln 2 + 2\ln 3 - \ln 5 - \ln 7.} \)

Suy ra \(\left\{ \begin{array}{l}a = b = 2\\c = d = - 1\end{array} \right. \Rightarrow P = ab + cd = 5.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \[\frac{{{a^3}\sqrt 3 }}{3}.\]                  
B. \[\frac{{8{a^3}\sqrt 3 }}{9}.\]     
C. \[\frac{{{a^3}\sqrt 3 }}{9}.\]                         
D. \[\frac{{8{a^3}\sqrt 3 }}{3}.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \[\frac{{x + 3}}{5} = \frac{{y - 2}}{{ - 1}} = \frac{{z - 1}}{1}.\]        
B. \[\frac{{x + 3}}{5} = \frac{{y - 2}}{{ - 1}} = \frac{{z - 1}}{{ - 1}}.\]               
C. \[\frac{{x - 3}}{{ - 5}} = \frac{{y + 2}}{1} = \frac{{z + 1}}{{ - 1}}.\]                          
D. \[\frac{{x + 8}}{1} = \frac{{y - 3}}{3} = \frac{z}{{ - 4}}.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \[C_{50}^2.\]       
B. \[A_{50}^2.\]        
C. \[C_{50}^2 - 50.\] 
D. \[A_{50}^2 - 50.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP