Câu hỏi:

28/06/2022 518 Lưu

Xét các số phức z thỏa mãn z không phải là số thực và \[w = \frac{z}{{4 + z + {z^2}}}\] là số thực. Tìm giá trị lớn nhất \[{P_{\max }}\] của biểu thức \[P = \left| {z + 3 - 4i} \right|\]

A. \[{P_{\max }} = 9.\]                                
B. \[{P_{\max }} = 7.\]
C. \[{P_{\max }} = 5.\]  
D. \[{P_{\max }} = 6.\]

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án B

Do \(w = \frac{z}{{4 + z + {z^2}}}\) là số thực nên \(\frac{{4 + z + {z^2}}}{z} = \frac{4}{z} + 1 + z\) là một số thực

Đặt \(z = a + bi\left( {a,b \in \mathbb{R},b \ne 0} \right)\) ta có: \(\frac{4}{{a + bi}} + a + bi = \frac{{4\left( {a - bi} \right)}}{{{a^2} + {b^2}}} + a + bi\) là số thực

Suy ra phần ảo

Do đó tập hợp điểm M biểu diễn số phức z là đường tròn tâm \(O\left( {0;0} \right)\) bán kính \(R = 2.\)

Vậy \({P_{\max }} = R + OE\) với \(E\left( { - 3;4} \right) \Rightarrow {P_{\max }} = 2 + 5 = 7.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. 95                         
B. 94                         
C. 96                         
D. Vô số

Lời giải

Đáp án A

Tập xác định: \(D = \mathbb{R}.\)

Ta có, \(f'\left( x \right) = {x^2} - 2\left( {m + 50} \right)x + {m^2} + 100m\)

Để hàm số nghịch biến trên \(\left( {7;13} \right)\) thì phương trình \(f'\left( x \right) = 0\) phải có hai nghiệm \({x_1},{x_2}\) thỏa mãn \(\left\{ \begin{array}{l}{x_1} \le 7\\{x_2} \ge 13\end{array} \right..\)

Từ đó, ta có hệ phương trình: \(\left\{ \begin{array}{l}\Delta ' = {\left[ { - \left( {m + 50} \right)} \right]^2} - \left( {{m^2} + 100m} \right) = 2500 > 0,\forall m\\{x_1} = m \le 7\\{x_2} = m + 100 \ge 13\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}m \le 7\\m \ge - 87\end{array} \right. \Leftrightarrow - 87 \le m \le 7\)

Do m nguyên, cho nên tập hợp các giá trị của m là: \(S = \left\{ { - 87; - 86;...;6;7} \right\}\)

Có 95 giá trị nguyên của m thỏa mãn.

Câu 2

A. \[P = - 5.\]            
B. \[P = 5.\]                
C. \[P = - 4.\]            
D. \[P = 2.\]

Lời giải

Đáp án B

Ta có \(\int\limits_4^5 {\frac{{dx}}{{{x^2} + 3x + 2}} = \int\limits_4^5 {\left( {\frac{1}{{x + 1}} - \frac{1}{{x + 2}}} \right)dx} = \ln \left| {\frac{{x + 1}}{{x + 2}}} \right|\left| {_{\scriptstyle\atop\scriptstyle4}^{\scriptstyle5\atop\scriptstyle}} \right. = 2\ln 2 + 2\ln 3 - \ln 5 - \ln 7.} \)

Suy ra \(\left\{ \begin{array}{l}a = b = 2\\c = d = - 1\end{array} \right. \Rightarrow P = ab + cd = 5.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \[\frac{{{a^3}\sqrt 3 }}{3}.\]                  
B. \[\frac{{8{a^3}\sqrt 3 }}{9}.\]     
C. \[\frac{{{a^3}\sqrt 3 }}{9}.\]                         
D. \[\frac{{8{a^3}\sqrt 3 }}{3}.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \[\frac{{x + 3}}{5} = \frac{{y - 2}}{{ - 1}} = \frac{{z - 1}}{1}.\]        
B. \[\frac{{x + 3}}{5} = \frac{{y - 2}}{{ - 1}} = \frac{{z - 1}}{{ - 1}}.\]               
C. \[\frac{{x - 3}}{{ - 5}} = \frac{{y + 2}}{1} = \frac{{z + 1}}{{ - 1}}.\]                          
D. \[\frac{{x + 8}}{1} = \frac{{y - 3}}{3} = \frac{z}{{ - 4}}.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \[C_{50}^2.\]       
B. \[A_{50}^2.\]        
C. \[C_{50}^2 - 50.\] 
D. \[A_{50}^2 - 50.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP