Cho hàm số \[y = f\left( x \right)\] liên tục trên \[\mathbb{R}\] và có đồ thị \[y = f'\left( x \right)\] như hình vẽ. Đặt \[g\left( x \right) = 2f\left( x \right) - {\left( {x - 1} \right)^2}.\] Khi đó giá trị nhỏ nhất của hàm số \[y = g\left( x \right)\] trên đoạn \[\left[ { - 3;3} \right]\] bằng
Cho hàm số \[y = f\left( x \right)\] liên tục trên \[\mathbb{R}\] và có đồ thị \[y = f'\left( x \right)\] như hình vẽ. Đặt \[g\left( x \right) = 2f\left( x \right) - {\left( {x - 1} \right)^2}.\] Khi đó giá trị nhỏ nhất của hàm số \[y = g\left( x \right)\] trên đoạn \[\left[ { - 3;3} \right]\] bằng

Câu hỏi trong đề: Bộ đề minh họa môn Toán THPT Quốc gia năm 2022 (30 đề) !!
Quảng cáo
Trả lời:
Đáp án C
Ta có \(g'\left( x \right) = 2\left[ {f'\left( x \right) - \left( {x - 1} \right)} \right]\)
\(g'\left( x \right) = 0 \Leftrightarrow f'\left( x \right) = x - 1 \Leftrightarrow \left[ \begin{array}{l}x = - 3\\x = 1\\x = 3\end{array} \right.\)
Ta có bảng biến thiên của hàm số \(y = g\left( x \right)\)

Từ bảng biến thiên \( \Rightarrow \mathop {\min }\limits_{\left[ { - 3;3} \right]} g\left( x \right) \in \left\{ {g\left( 3 \right);g\left( { - 3} \right)} \right\}\)
Ta có \(\int\limits_{ - 3}^1 {g'\left( x \right)} dx > \int\limits_1^3 { - g'\left( x \right)dx} \Leftrightarrow g\left( 1 \right) - g\left( { - 3} \right) > g\left( 1 \right) - g\left( 3 \right) \Leftrightarrow g\left( { - 3} \right) < g\left( 3 \right)\)
Vậy giá trị nhỏ nhất của hàm số \(g\left( x \right)\) trên đoạn \(\left[ { - 3;3} \right]\) bằng \(g\left( { - 3} \right).\)
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án A
Tập xác định: \(D = \mathbb{R}.\)
Ta có, \(f'\left( x \right) = {x^2} - 2\left( {m + 50} \right)x + {m^2} + 100m\)
Để hàm số nghịch biến trên \(\left( {7;13} \right)\) thì phương trình \(f'\left( x \right) = 0\) phải có hai nghiệm \({x_1},{x_2}\) thỏa mãn \(\left\{ \begin{array}{l}{x_1} \le 7\\{x_2} \ge 13\end{array} \right..\)
Từ đó, ta có hệ phương trình: \(\left\{ \begin{array}{l}\Delta ' = {\left[ { - \left( {m + 50} \right)} \right]^2} - \left( {{m^2} + 100m} \right) = 2500 > 0,\forall m\\{x_1} = m \le 7\\{x_2} = m + 100 \ge 13\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}m \le 7\\m \ge - 87\end{array} \right. \Leftrightarrow - 87 \le m \le 7\)
Do m nguyên, cho nên tập hợp các giá trị của m là: \(S = \left\{ { - 87; - 86;...;6;7} \right\}\)
Có 95 giá trị nguyên của m thỏa mãn.
Câu 2
Lời giải
Đáp án B
Ta có \(\int\limits_4^5 {\frac{{dx}}{{{x^2} + 3x + 2}} = \int\limits_4^5 {\left( {\frac{1}{{x + 1}} - \frac{1}{{x + 2}}} \right)dx} = \ln \left| {\frac{{x + 1}}{{x + 2}}} \right|\left| {_{\scriptstyle\atop\scriptstyle4}^{\scriptstyle5\atop\scriptstyle}} \right. = 2\ln 2 + 2\ln 3 - \ln 5 - \ln 7.} \)
Suy ra \(\left\{ \begin{array}{l}a = b = 2\\c = d = - 1\end{array} \right. \Rightarrow P = ab + cd = 5.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

