1) Giải hệ phương trình:
2) Cho hệ phương trình:
Tìm m để hệ phương trình có nghiệm duy nhất (x; y) sao cho x = y.
1) Giải hệ phương trình:
2) Cho hệ phương trình:
Tìm m để hệ phương trình có nghiệm duy nhất (x; y) sao cho x = y.
Quảng cáo
Trả lời:
1) Điều kiện xác định:
Đặt và .
Hệ phương trình trở thành
Với
(thỏa mãn)
Với = 1
(thỏa mãn)
Vậy hệ phương trình đã cho có hai cặp nghiệm (25; 1) và (25; 0).
2) Để hệ phương trình có nghiệm duy nhất thì: .
Gọi (x0; y0) là cặp nghiệm của phương trình thỏa mãn x0 = y0.
Thay vào hệ phương trình ta được:
(1) Û −m2 – m + 2m + 2 = 2m
Û m2 + m – 2 = 0
Û m2 + 2m – m – 2 = 0
Û m(m + 2) – (m + 2) = 0
Û (m – 1)(m + 2) = 0
Û (thỏa mãn)
Vậy m = 1 hoặc m = −2 thì hệ phương trình có nghiệm duy nhất (x; y) thỏa mãn x = y.
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi x (bể) là phần nước của bể vòi một chảy được trong 1 giờ (x > 0)
y (bể) là phần nước của bể vòi hai chảy dược trong 1 giờ (y > 0)
Hai vòi nước cùng chảy vào một bể cạn trong 18 giờ thì đầy bể nên
18x + 18y = 1 (1)
Vòi 1 chảy trong 4 giờ, vòi 2 chảy trong 7 giờ thì chỉ được bể nên
4x + 7y = (2)
Từ (1) và (2) ta có hệ phương trình:
Û
Û
Û (thỏa mãn)
Ta có vòi 1 mỗi giờ chảy được bể suy ra vòi 1 chảy một mình 54 giờ thì đầy bể,
vòi 2 mỗi giờ chảy được bể suy ra vòi 2 chảy một mình 27 giờ thì đầy bể.
Vậy vòi 1 chảy một mình 54 giờ thì đầy bể, vòi 2 chảy một mình trong 27 giờ thì đầy bể.
Lời giải
Áp dụng bất đẳng thức Bu-nhi-a-cop-xki:
Xét
= 3.[3.(a + b + c) + 3 = 3.(3.3 + 3) = 66
Suy ra K ≤ 6
Dấu “=” xảy ra khi và chỉ khi
Û 3a + 1 = 3b + 1 = 3c + 1
Û a = b = c.
Mà a + b + c = 1 nên a = b = c = 1.
Vậy giá trị lớn nhất của biểu thức K = 6 khi a = b = c = 1.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.