Câu hỏi:

01/07/2022 1,639 Lưu

Gọi E là tập hợp tất cả các số nguyên dương y sao cho với mỗi số y có không quá 4031 số nguyên x thỏa mãn log22x3ylog2x+2y2<0. Tập E có bao nhiêu phần tử? 

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

ĐKXĐ: x > 0

Coi bất phương trình đã cho có y là tham số.

Ta có Δ=3y24.2y2=y20 y.

Khi đó bất phương trình đã cho có nghiệm 3yy2<log2x<3y+y2y<log2x<2y2y<x<22y.

 Tập nghiệm của bất phương trình là S=2y;22y.

Theo bài ra ta có: Có không quá 4031 số nguyên x thỏa mãn phương trình nên 22y2y+124031 (trừ đi 2 đầu mút).

22y2y40320

632y64

y6

Kết hợp điều kiện y là số nguyên dương  Có 6 giá trị của y thỏa mãn.

Chọn B.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

y=log3xy'=1xln3.

Chọn B.

Lời giải

Cho y=0x2x+1=0x=2.

Vậy đồ thị hàm số y=x2x+1 cắt trục hoành tại điểm có hoành độ bằng 2.

Chọn D.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP