Câu hỏi:

13/07/2024 8,181

Có bao nhiêu số gồm sáu chữ số đôi một khác nhau được tạo thành từ các chữ số 1, 2, 3, 4, 5, 6?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải:

Mỗi cách tạo ra một số gồm sáu chữ số đôi một khác nhau từ các chữ số 1, 2, 3, 4, 5, 6 là một hoán vị của 6 phần tử.

Vậy số số gồm sáu chữ số thỏa mãn yêu cầu bài toán được tạo thành là:

P6 = 6! = 6 . 5 . 4 . 3 . 2 . 1 = 720 (số).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Để tạo ra một mật khẩu, bạn Việt thực hiện hai hành động liên tiếp sau:

+ Thứ nhất, chọn 3 kí tự đầu tiên chính là chọn 3 chữ cái trong 26 chữ cái và xếp thứ tự ba chữ cái đó. Mỗi cách xếp là một chỉnh hợp chập 3 của 26. Do đó, có \(A_{26}^3\) cách chọn 3 kí tự đầu tiên.

+ Thứ hai, chọn 5 kí tự tiếp theo chính là chọn 5 chữ số trong 10 chữ số (từ 0 đến 9) và xếp thứ tự 5 chữ số đó. Mỗi cách xếp là một chỉnh hợp chập 5 của 10. Do đó, có \(A_{10}^5\) cách chọn 5 kí tự tiếp theo.

Theo quy tắc nhân, vậy bạn Việt có \(A_{26}^3.A_{10}^5\) = 471 744 000 (cách tạo ra mật khẩu).

Lời giải

Hướng dẫn giải

Mỗi cách lập một số gồm 8 chữ số đôi một khác nhau là một hoán vị của 8 phần tử.

Vậy ta lập được P8 = 8! = 8 . 7. 6 . 5 . 4 . 3 . 2 . 1 = 40 320 số gồm 8 chữ số đôi một khác nhau.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP