Câu hỏi:

11/07/2024 12,701

Trong mặt phẳng, cho 6 đường thẳng song song và 8 đường thẳng song song cùng vuông góc với 6 đường thẳng đó. Có bao nhiêu hình chữ nhật được tạo thành?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Cứ 2 đường thẳng trong nhóm 6 đường thẳng song song và 2 đường thẳng trong nhóm 8 đường thẳng  song song cùng vuông góc với 6 đường thẳng trên tạo thành 1 hình chữ nhật.

Do đó, việc lập một hình chữ nhật được thực hiện bởi 2 hành động liên tiếp sau:

+ Chọn 2 đường thẳng trong 6 đường thẳng có \(C_6^2 = 15\) cách chọn.

+ Chọn 2 đường thẳng trong 8 đường thẳng có \(C_8^2 = 28\) cách chọn.

Theo quy tắc nhân, số hình chữ nhật được tạo thành là: 15 . 28 = 420 (hình chữ nhật).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Chọn 3 điểm để tạo thành 3 đỉnh của một tam giác thì 3 điểm đó phải không thẳng hàng với nhau.

Do đó, ta chọn 3 điểm sao cho 1 điểm thuộc được thẳng này và 2 điểm phải thuộc đường thẳng kia. Khi chọn như thế, ta chỉ có thể chọn theo một trong hai khả năng sau:

- Chọn 1 điểm thuộc đường thẳng a và 2 điểm thuộc đường thẳng b;

- Chọn 2 điểm thuộc đường thẳng a và 1 điểm thuộc đường thẳng b.

• Xét khả năng thứ nhất: Chọn 1 điểm thuộc đường thẳng a và 2 điểm thuộc đường thẳng b.

Chọn 1 điểm trong 3 điểm thuộc đường thẳng a, có \(C_3^1 = 3\) (cách chọn).

Chọn 2 điểm trong 4 điểm thuộc đường thẳng b, có \(C_4^2 = 6\) (cách chọn).

Theo quy tắc nhân, số cách chọn 1 điểm thuộc đường thẳng a và 2 điểm thuộc đường thẳng b là: 3 . 6 = 18.

• Xét khả năng thứ hai: Chọn 2 điểm thuộc đường thẳng a và 1 điểm thuộc đường thẳng b.

Chọn 2 điểm trong 3 điểm thuộc đường thẳng a, có \(C_3^2 = 3\) (cách chọn).

Chọn 1 điểm trong 4 điểm thuộc đường thẳng b, có \(C_4^1 = 4\) (cách chọn).

Theo quy tắc nhân, số cách chọn 2 điểm thuộc đường thẳng a và 1 điểm thuộc đường thẳng b là: 3 . 4 = 12.

Theo quy tắc cộng, số tam giác có cả 3 đỉnh là 3 điểm trong 7 điểm nói trên là 18 + 12 = 30 (tam giác).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay