Câu hỏi:
05/07/2022 38,068Tại một nơi không có gió, một chiếc khí cầu đang đứng yên ở độ cao 162 (mét) so với mặt đất đã được phi công cài đặt cho nó chế độ chuyển động đi xuống. Biết rằng, khí cầu đã chuyển động theo phương thẳng đứng với vận tốc tuân theo quy luật \[v\left( t \right) = 10t - {t^2},\] trong đó t (phút) là thời gian tính từ lúc bắt đầu chuyển động, \[v\left( t \right)\] được tính theo đơn vị mét/phút (m/p). Nếu như vậy thì khi bắt đầu tiếp đất vận tốc v của khí cầu là
Câu hỏi trong đề: Bộ đề minh họa môn Toán THPT Quốc gia năm 2022 (30 đề) !!
Quảng cáo
Trả lời:
Đáp án B
Khi bắt đầu tiếp đất vật chuyển động được quảng đường là \(s = 162m\).
Ta có: \(s = \int\limits_0^t {\left( {10t - {t^2}} \right)dt} = \left. {\left( {5{t^2} - \frac{{{t^3}}}{3}} \right)} \right|_0^t = 5{t^2} - \frac{{{t^3}}}{3}\) (trong đó t là thời điểm vật tiếp đất).
Cho \(5{t^2} - \frac{{{t^3}}}{3} = 162 \Rightarrow t = 9\) (Do \(v\left( t \right) = 10t - {t^2} \Rightarrow 0 \le t \le 10\)).
Khi đó vận tốc của vật là: \(v\left( 9 \right) = 10.9 - {9^2} = 9{\rm{ }}\left( {{\rm{m/p}}} \right)\).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án D
\({3^{2{\rm{x}} - 1}} > 27 \Leftrightarrow {3^{2{\rm{x}} - 1}} > {3^3} \Leftrightarrow 2{\rm{x}} - 1 > 3 \Leftrightarrow x > 2\)
Vậy tập nghiệm của bất phương trình là \(\left( {2; + \infty } \right)\).
Lời giải
Đáp án C
+ Chia cả 2 vế của bất phương trình cho \({2^x} > 0\).
+ Đặt \(t = {\left( {3 + \sqrt 7 } \right)^x}{\rm{ }}\left( {t > 0} \right)\).
+ Đưa bất phương trình về dạng \(m \le f\left( t \right),{\rm{ }}\forall t > 0 \Leftrightarrow m \le \mathop {\min }\limits_{\left( {0; + \infty } \right)} f\left( t \right)\).
+ Lập BBT hàm số \(y = f\left( t \right)\) và kết luận.
Chia cả 2 vế của bất phương trình cho \({2^x} > 0\) ta được: \({\left( {3 + \sqrt 7 } \right)^x} + \left( {2 - m} \right){\left( {\frac{{3 - \sqrt 7 }}{2}} \right)^x} - \left( {m + 1} \right) \ge 0\)
Nhận xét: \({\left( {3 + \sqrt 7 } \right)^x}{\left( {\frac{{3 - \sqrt 7 }}{2}} \right)^x} = 1\), do đó khi ta đặt \(t = {\left( {3 + \sqrt 7 } \right)^x}{\rm{ }}\left( {t > 0} \right) \Rightarrow {\left( {\frac{{3 - \sqrt 7 }}{2}} \right)^x} = \frac{1}{t}\).
Phương trình trở thành: \(t + \left( {2 - m} \right)\frac{1}{t} - \left( {m + 1} \right) \ge 0 \Leftrightarrow {t^2} - \left( {m + 1} \right)t + 2 - m \ge 0\)
\( \Leftrightarrow {t^2} - t + 2 \ge m\left( {t + 1} \right) \Leftrightarrow m \le \frac{{{t^2} - t + 2}}{{t + 1}} = f\left( t \right){\rm{ }}\forall t > 0 \Leftrightarrow m \le \mathop {\min }\limits_{\left( {0; + \infty } \right)} f\left( t \right)\).
Xét hàm số \(f\left( t \right) = \frac{{{t^2} - t + 2}}{{t + 1}}\left( {t > 0} \right)\), ta có: \(f'\left( t \right) = \frac{{\left( {2t - 1} \right)\left( {t + 1} \right) - {t^2} + t - 2}}{{{{\left( {t + 1} \right)}^2}}} = \frac{{{t^2} + 2t - 3}}{{{{\left( {t + 1} \right)}^2}}} = 0 \Leftrightarrow \left[ \begin{array}{l}t = 1\\t = - 3\end{array} \right.\).
BBT:
![Có bao nhiêu giá trị nguyên của tham số m thuộc[-10;10] để bất phương trình sau (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2022/07/blobid8-1657014846.png)
Từ BBT \( \Rightarrow m \le 1\).
Kết hợp điều kiện đề bài \( \Rightarrow \left\{ \begin{array}{l}m \in \mathbb{R}\\m \in \left[ { - 10;1} \right]\end{array} \right. \Rightarrow \) có 12 giá trị của m thỏa mãn yêu cầu bài toán.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.