Câu hỏi:

22/02/2021 599

Có tất cả bao nhiêu cặp số thực (x,y) sao cho x-1;1 và ln(x-y)2-2017x=ln(x-y)y - 2017y + e2018. Biết rằng giá trị lớn nhất của biểu thức P = e2018 (y+1)x2 - 2018x2 với (x;y)S đạt được tại (x0, y0). Mệnh đề nào sau đây đúng?

Đáp án chính xác

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn sử Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án A

Ta có

Xét hàm số

Suy ra f(t) là hàm số đồng biến trên

Khi đó

Lại có

Nên g’(x) là hàm số nghịch biến trên

Vậy max-1;1g(x) = g(x0) hay giá trị lớn nhất của P đạt được khi x0 (-1;0)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho a, b là hai số thực dương khác 1 và thỏa mãn loga2b - 8logb(ab3) = -83. Tính giá trị biểu thức P = loga(aab3) + 2017

Xem đáp án » 22/02/2021 78,069

Câu 2:

Tìm m để phương trình log32x - (m+2)log3x + 3m - 1 = 0 có hai nghiệm x1, x2 thỏa mãn x1x2 = 27

Xem đáp án » 22/02/2021 15,355

Câu 3:

Cho m = log220. Tính log205 theo m được

Xem đáp án » 15/01/2020 13,147

Câu 4:

Cho các số thực dương x, y thỏa mãn log(x+2y) = logx + logy. Tìm giá trị nhỏ nhất của biểu P = ex21+2y4.ey21+2x

Xem đáp án » 20/01/2020 12,455

Câu 5:

Giá trị nhỏ nhất của P=(logab2)2+6(logbaba)2 với a, b là các số thực thay đổi thỏa mãn b >a > 1 là:

Xem đáp án » 22/02/2021 9,024

Câu 6:

Cho a, b là các số thực dương, thỏa mãn a34 > a43 và logb12 < logb23. Mệnh đề nào dưới đây đúng?

Xem đáp án » 15/01/2020 8,872

Câu 7:

Cho các số thực dương a, b với a0 và logab < 0. Khẳng định nào sau đây đúng?

Xem đáp án » 22/02/2021 7,039

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store