Câu hỏi:

08/07/2022 191

Phương trình \[(x + 4)(x + 1) - 3\sqrt {{x^2} + 5x + 2} = 6\] có bao nhiêu nghiệm nguyên âm:

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: B

Điều kiện của phương trình: x2 + 5x + 2 ≥ 0\[ \Leftrightarrow \left[ \begin{array}{l}x \ge \frac{{ - 5 + \sqrt {17} }}{2}\\x \le \frac{{ - 5 - \sqrt {17} }}{2}\end{array} \right.\]

\[(x + 4)(x + 1) - 3\sqrt {{x^2} + 5x + 2} = 6 \Leftrightarrow {x^2} + 5x + 4 - 3\sqrt {{x^2} + 5x + 2} = 6\]

Đặt \[\sqrt {{x^2} + 5x + 2} = t(t \ge 0)\]

\[{x^2} + 5x + 4 - 3\sqrt {{x^2} + 5x + 2} = 6 \Leftrightarrow {t^2} - 3t - 4 = 0 \Leftrightarrow \left[ \begin{array}{l}t = - 1\\t = 4\end{array} \right.\]

Kết hợp với điều kiện t = 4 thỏa mãn

Với t = 4 ta có \[\sqrt {{x^2} + 5x + 2} = 4 \Leftrightarrow {x^2} + 5x - 14 = 0 \Leftrightarrow \left[ \begin{array}{l}x = 2\\x = - 7\end{array} \right.\]

Vậy phương trình đã cho có 1 nghiệm nguyên âm.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Đáp án đúng là: A

Dựa vào đồ thị ta có trục đối xứng x = 1

Đáp án A, B đều có trục đối xứng x = 1 nên A, B đều thỏa mãn

Đáp án C có trục đối xứng x = 2 nên loại đáp án C.

Đáp án D có trục đối xứng \[x = \frac{1}{4}\] nên loại đáp án D.

Dựa vào đồ thị ta có tọa độ đỉnh I(1; – 3)

Đáp án A có tọa độ đỉnh I(1; – 3) đáp án A thỏa mãn.

Đáp án B có tọa độ đỉnh I(1; – 2) nên loại đáp án B.

Câu 2

Lời giải

Đáp án đúng là: B

Tọa độ đỉnh của hàm số là I(1; 2)

Bảng biến thiên

Hàm số y = – x2 + 2x + 1 đồng biến trên khoảng (ảnh 1)

Từ bảng biến thiên ta có hàm số tăng từ trái sang phải trên khoảng (– ∞; 1) nên hàm số đồng biến trên khoảng (– ∞; 1).

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP