Câu hỏi:

08/07/2022 2,123

Cho f(x) = x2 – 1. Tìm khẳng định sai trong các khẳng định sau đây

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: D

Xét f(x) = x2 – 1 có ∆ = – 4.(–1) = 4 > 0, a = 1 > 0 và có hai nghiệm phân biệt x1 = –1 và x2 = 1.

Khi đó ta có bảng xét dấu:

Cho f(x) = x^2 – 1. Tìm khẳng định sai trong các khẳng định sau (ảnh 1)

Từ bảng xét dấu ta có f(x) > 0 khi x (– ∞; –1) \( \cup \) (1; + ∞); f(x) < 0 khi x ( 1; 1)

Vậy khẳng định sai là D

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Đáp án đúng là: A

Dựa vào đồ thị ta có trục đối xứng x = 1

Đáp án A, B đều có trục đối xứng x = 1 nên A, B đều thỏa mãn

Đáp án C có trục đối xứng x = 2 nên loại đáp án C.

Đáp án D có trục đối xứng \[x = \frac{1}{4}\] nên loại đáp án D.

Dựa vào đồ thị ta có tọa độ đỉnh I(1; – 3)

Đáp án A có tọa độ đỉnh I(1; – 3) đáp án A thỏa mãn.

Đáp án B có tọa độ đỉnh I(1; – 2) nên loại đáp án B.

Câu 2

Lời giải

Đáp án đúng là: B

Tọa độ đỉnh của hàm số là I(1; 2)

Bảng biến thiên

Hàm số y = – x2 + 2x + 1 đồng biến trên khoảng (ảnh 1)

Từ bảng biến thiên ta có hàm số tăng từ trái sang phải trên khoảng (– ∞; 1) nên hàm số đồng biến trên khoảng (– ∞; 1).

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP