Câu hỏi:

11/07/2024 24,909

Để kéo đường dây điện băng qua một hồ hình chữ nhật ABCD với độ dài AB = 200 m, AD = 180 m, người ta dự định làm 4 cột điện liên tiếp cách đều, cột thứ nhất nằm trên bờ AB và cách đỉnh A khoảng cách 20 m, cột thứ tư nằm trên bờ CD và cách đỉnh C khoảng cách 30 m. Tính các khoảng cách từ vị trí các cột thứ hai, thứ ba đến các bờ AB, AD.

Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Để kéo đường dây điện băng qua một hồ hình chữ nhật ABCD với độ dài AB = 200 m, AD = 180 m, người ta dự định làm 4 cột điện liên tiếp cách đều, cột thứ nhất nằm trên bờ AB và cách đỉnh A khoả (ảnh 1)

Chọn hệ trục tọa độ Oxy sao cho các đỉnh của hình hồ hình chữ nhật có các tọa độ là A(0; 0), B(200; 0), C(200; 180) và D(0; 180).

Gọi vị trí các cột điện được trồng là C1, C2, C3 và C4.

Vì vị trí cột điện thứ nhất C1 nằm trên bờ AB và cách A một khoảng 20 m nên trong hệ trục tọa độ đã chọn, điểm C1(20; 0).

Vị trí cột điện thứ tư nằm trên bờ CD và cách C một khoảng 30 m nên khoảng cách từ C4 đến D là 170 m. Khi đó trong hệ trục tọa độ đã chọn, điểm C4(170; 180).

Vì bốn cột điện được trồng liên tiếp nhau và cách đều trên một đường thẳng nên:

C1C2 = C2C3 = C3C4

C1C2 = \(\frac{1}{3}\)C1C4 và C1C3 = \(\frac{2}{3}\)C1C4.

\( \Rightarrow \overrightarrow {{C_1}{C_2}} = \frac{1}{3}\overrightarrow {{C_1}{C_4}} \) và \(\overrightarrow {{C_1}{C_3}} = \frac{2}{3}\overrightarrow {{C_1}{C_4}} \)

Giả sử C2(a; b) và C3(x; y).

Với C1(20; 0), C4(170; 180) ta có:

\(\overrightarrow {{C_1}{C_4}} = \left( {150;180} \right)\); \(\overrightarrow {{C_1}{C_2}} = \left( {a - 20;b} \right)\) và \(\overrightarrow {{C_1}{C_3}} = \left( {x - 20;y} \right)\)

• \[\overrightarrow {{C_1}{C_2}} = \frac{1}{3}\overrightarrow {{C_1}{C_4}} \Leftrightarrow \left\{ \begin{array}{l}a - 20 = \frac{1}{3}.150 = 50\\b = \frac{1}{3}.180 = 60\end{array} \right.\]

\[ \Leftrightarrow \left\{ \begin{array}{l}a = 70\\b = 60\end{array} \right.\] C2(70; 60).

d(C2; AB) = d(C2; Ox) = |b| = 60 (m).

d(C2; AD) = d(C2; Oy) = |a| = 70 (m).

• \(\overrightarrow {{C_1}{C_3}} = \frac{2}{3}\overrightarrow {{C_1}{C_4}} \)\[ \Leftrightarrow \left\{ \begin{array}{l}x - 20 = \frac{2}{3}.150 = 100\\y = \frac{2}{3}.180 = 120\end{array} \right.\]

\[ \Leftrightarrow \left\{ \begin{array}{l}x = 120\\y = 120\end{array} \right.\] C3(120; 120).

d(C3; AB) = d(C3; Ox) = |y| = 120 (m)

d(C3; AD) = d(C3; Oy) = |x| = 120 (m).

Vậy khoảng cách từ cột điện thứ hai đến bờ AB là 60 m và đến bờ AD là 70 m.

Khoảng cách từ cột điện thứ ba đến bờ AB là 120 m và đến bờ AD là 120 m.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Trong mặt phẳng toạ độ Oxy cho ba điểm M(4; 0), N(5; 2) và P(2, 3). Tìm toạ độ các đỉnh của tam giác ABC, biết M, N, P theo thứ tự là trung điểm cạnh BC, CA, AB.

Xem đáp án » 11/07/2024 5,044

Câu 2:

Trong mặt phẳng toạ độ Oxy cho ba điểm A(1; 2), B(3; 4) và C(2; –1).

Tìm toạ độ tâm I của đường tròn ngoại tiếp và trực tâm H của tam giác ABC.

Xem đáp án » 11/07/2024 4,912

Câu 3:

Trong mặt phẳng toạ độ Oxy cho ba điểm A(2;–1), B(1; 4) và C(7; 0).

Tính độ dài các đoạn thẳng AB, BC và CA. Từ đó suy ra tam giác ABC là một tam giác vuông cân.

Xem đáp án » 11/07/2024 3,294

Câu 4:

Trong mặt phẳng toạ độ Oxy cho ba điểm A(1; 2), B(3; 4) và C(2; –1).

Chứng minh rằng A, B, C là ba đỉnh của một tam giác. Tìm toạ độ trọng tâm của tam giác đó.

Xem đáp án » 11/07/2024 3,171

Câu 5:

Trong mặt phẳng toạ độ Oxy cho ba điểm A(2;–1), B(1; 4) và C(7; 0).

Tìm toạ độ của điểm D sao cho tứ giác ABDC là một hình vuông.

Xem đáp án » 11/07/2024 2,640

Câu 6:

Trong mặt phẳng toạ độ Oxy cho hai điểm M(–3; 2) và N(2; 7).

Tìm toạ độ của điểm P thuộc trục tung sao cho M, N, P thẳng hàng.

Xem đáp án » 11/07/2024 2,636

Bình luận


Bình luận