Câu hỏi:
11/07/2024 6,058Trong mặt phẳng toạ độ Oxy cho ba điểm M(4; 0), N(5; 2) và P(2, 3). Tìm toạ độ các đỉnh của tam giác ABC, biết M, N, P theo thứ tự là trung điểm cạnh BC, CA, AB.
Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).
Quảng cáo
Trả lời:
Lời giải
Cách 1:
Gọi A(xA; yA); B(xB; yB) và C(xC; yC) là tọa độ ba đỉnh của tam giác ABC.
Ta có:
+) M(4; 0) là trung điểm của BC nên \(\left\{ \begin{array}{l}4 = \frac{{{x_B} + {x_C}}}{2}\\0 = \frac{{{y_B} + {y_C}}}{2}\end{array} \right.\)
\( \Rightarrow \left\{ \begin{array}{l}{x_B} + {x_C} = 8\\{y_B} + {y_C} = 0\end{array} \right.\)(1)
+) N(5; 2) là trung điểm của CA nên \[\left\{ \begin{array}{l}5 = \frac{{{x_A} + {x_C}}}{2}\\2 = \frac{{{y_A} + {y_C}}}{2}\end{array} \right.\]
\[ \Rightarrow \left\{ \begin{array}{l}{x_A} + {x_C} = 10\\{y_A} + {y_C} = 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_C} = 10 - {x_A}\\{y_C} = 4 - {y_A}\end{array} \right.\](2)
+) P(2; 3) là trung điểm của AB nên \[\left\{ \begin{array}{l}2 = \frac{{{x_A} + {x_B}}}{2}\\3 = \frac{{{y_A} + {y_B}}}{2}\end{array} \right.\]
\[ \Rightarrow \left\{ \begin{array}{l}{x_A} + {x_B} = 4\\{y_A} + {y_B} = 6\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_B} = 4 - {x_A}\\{y_B} = 6 - {y_A}\end{array} \right.\](3)
Thay (2) và (3) vào (1) ta được:
\(\left\{ \begin{array}{l}\left( {4 - {x_A}} \right) + \left( {10 - {x_A}} \right) = 8\\\left( {6 - {y_A}} \right) + \left( {4 - {y_A}} \right) = 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}14 - 2{x_A} = 8\\10 - 2{y_A} = 0\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}{x_A} = 3\\{y_A} = 5\end{array} \right.\) A(3; 5)
Khi đó \[\left\{ \begin{array}{l}{x_B} = 4 - 3 = 1\\{y_B} = 6 - 5 = 1\end{array} \right.\] B(1; 1)
\[\left\{ \begin{array}{l}{x_C} = 10 - 3 = 7\\{y_C} = 4 - 5 = - 1\end{array} \right.\] C(7; –1)
Vậy A(3; 5), B(1; 1) và C(7; –1).
Cách 2:
Do M, N, P
lần lượt là trung điểm của BC, CA, AB
Nên MN, NP, PM là các đường trung bình của tam giác ABC.
MN // AB, NP // BC, MP // AC.
+) Do MN // BM và NP // BM nên tứ giác MNPB là hình bình hành
\( \Rightarrow \overrightarrow {MB} = \overrightarrow {NP} \)
Gọi B(xB; yB) và có M(4; 0), N(5; 2) và P(2, 3).
\( \Rightarrow \overrightarrow {MB} = \left( {{x_B} - 4;{y_B}} \right)\) và \(\overrightarrow {NP} = \left( {2 - 5;3 - 2} \right) = \left( { - 3;1} \right)\)
Khi đó \(\overrightarrow {MB} = \overrightarrow {NP} \Leftrightarrow \left\{ \begin{array}{l}{x_B} - 4 = - 3\\{y_B} = 1\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}{x_B} = 1\\{y_B} = 1\end{array} \right.\) B(1; 1)
Tương tự ta cũng có A(3; 5) và C(7; –1).
Vậy A(3; 5), B(1; 1) và C(7; –1).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Để kéo đường dây điện băng qua một hồ hình chữ nhật ABCD với độ dài AB = 200 m, AD = 180 m, người ta dự định làm 4 cột điện liên tiếp cách đều, cột thứ nhất nằm trên bờ AB và cách đỉnh A khoảng cách 20 m, cột thứ tư nằm trên bờ CD và cách đỉnh C khoảng cách 30 m. Tính các khoảng cách từ vị trí các cột thứ hai, thứ ba đến các bờ AB, AD.
Câu 2:
Trong mặt phẳng toạ độ Oxy cho ba điểm A(1; 2), B(3; 4) và C(2; –1).
Tìm toạ độ tâm I của đường tròn ngoại tiếp và trực tâm H của tam giác ABC.
Câu 3:
Trong mặt phẳng toạ độ Oxy cho ba điểm A(1; 2), B(3; 4) và C(2; –1).
Chứng minh rằng A, B, C là ba đỉnh của một tam giác. Tìm toạ độ trọng tâm của tam giác đó.
Câu 4:
Trong mặt phẳng toạ độ Oxy cho ba điểm A(2;–1), B(1; 4) và C(7; 0).
Tính độ dài các đoạn thẳng AB, BC và CA. Từ đó suy ra tam giác ABC là một tam giác vuông cân.
Câu 5:
Trong mặt phẳng toạ độ Oxy cho ba điểm A(2;–1), B(1; 4) và C(7; 0).
Tìm toạ độ của điểm D sao cho tứ giác ABDC là một hình vuông.
Câu 6:
Trong mặt phẳng toạ độ Oxy cho hai điểm M(–3; 2) và N(2; 7).
Tìm toạ độ của điểm P thuộc trục tung sao cho M, N, P thẳng hàng.
12 Bài tập Ứng dụng của hàm số bậc hai để giải bài toán thực tế (có lời giải)
13 câu Trắc nghiệm Tích của vectơ với một số có đáp án (Thông hiểu)
185 câu Trắc nghiệm Toán 10 Bài 1:Phương trình đường thẳng trong mặt phẳng oxy có đáp án (Mới nhất)
10 Bài tập Ứng dụng ba đường conic vào các bài toán thực tế (có lời giải)
10 Bài tập Tính số trung bình, trung vị, tứ phân vị và mốt của mẫu số liệu cho trước (có lời giải)
10 Bài tập Cách xét tính đúng sai của mệnh đề (có lời giải)
10 Bài tập Viết phương trình cạnh, đường cao, trung tuyến, phân giác của tam giác (có lời giải)
23 câu Trắc nghiệm Toán 10 (có đáp án): Phương trình chứa căn
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận