Giải SBT Toán 10 Bài tập cuối chương 2 có đáp án

27 người thi tuần này 4.6 684 lượt thi 27 câu hỏi

Nội dung liên quan:

Danh sách câu hỏi:

Câu 1

Trong các bất phương trình sau, bất phương trình nào là bất phương trình bậc nhất hai ẩn?

Lời giải

Đáp án đúng là: C

Phương án A có x2 là hạng tử bậc 2.

Phương án B có xy là hạng tử bậc 2.

Phương án D có y3 là hạng tử bậc 3.

Phương án C có các hạng tử đều có bậc bằng 1.

Vậy ta chọn phương án C.

Câu 2

Trong các hệ bất phương trình sau, hệ bất phương trình nào là hệ bất phương trình bậc nhất hai ẩn?

Lời giải

Đáp án đúng là: B

Phương án A có y2 là hạng tử bậc 2.

Phương án C có y2 là hạng tử bậc 2.

Phương án D có xy là hạng tử bậc 2.

Phương án B có các hạng tử đều có bậc bằng 1.

Vậy ta chọn phương án B.

Câu 3

Điểm nào dưới đây thuộc miền nghiệm của bất phương trình 2x + 5y ≤ 10?

Lời giải

Đáp án đúng là: C

Thay x = 4; y = 2 vào biểu thức 2x + 5y ta được 2 . 4 + 5. 2 = 18 > 10 nên phương án A không thỏa mãn.

Thay x = -1; y = 4 vào biểu thức 2x + 5y ta được 2 . (-1) + 5 . 4 = 18 > 10 nên phương án B không thỏa mãn.

Thay x = -5; y = 6 vào biểu thức 2x + 5y ta được 2 . (-5) + 5 . 6 = 20 > 10 nên phương án D không thỏa mãn.

Thay x = 2; y = 1 vào biểu thức 2x + 5y ta được 2 . 2 + 5 . 1 = 9 < 10 nên phương án C đúng.

Vậy ta chọn phương án C.

Câu 4

Điểm nào dưới đây không thuộc miền nghiệm của bất phương trình 2x - 3y > 13?

Lời giải

Đáp án đúng là: D

Thay x = 1; y = -5 vào biểu thức 2x 3y ta được 2 . 1 -3 . (-5) = 17 > 13 nên phương án A không thỏa mãn.

Thay x = 2; y = -4 vào biểu thức 2x 3y ta được 2 . 2 -3 . (-4) = 16 > 13 nên phương án B không thỏa mãn.

Thay x = 3; y = -3 vào biểu thức 2x 3y ta được 2 . 3 -3 . (-3) = 15 > 13 nên phương án C không thỏa mãn.

Thay x = 8; y = 1 vào thức 2x 3y ta được 2 . 8- 3 . 1 = 13 nên phương án D đúng.

Vậy ta chọn phương án D.

Câu 5

Cho bất phương trình x + 2y ≤ 3. Khẳng định nào sau đây là đúng?

Lời giải

Đáp án đúng là: A

Bất phương trình x + 2y ≤ 3 nên miền nghiệm của bất phương trình là nửa mặt phẳng bờ d: x + 2y = 3.

Do đó đáp án C và D không thỏa mãn.

Thay x = 0; y = 0 vào biểu thức x + 2y ta được 0 + 2 . 0 = 0 < 3.

Suy ra miền nghiệm của bất phương trình là nửa mặt phẳng bờ d: x + 2y = 3 chứa gốc tọa độ.

Vậy ta chọn phương án A.

Câu 6

Cặp số nào dưới đây là nghiệm của hệ bất phương trình Cặp số nào dưới đây là nghiệm của hệ bất phương trình ? (ảnh 1)?

Lời giải

Đáp án đúng là: D

Các phương án A, B, C đều có giá trị x ≤ 0, do đó không thỏa mãn với điều kiện x > 0.

Thay x = 2; y = -4 vào hệ bất phương trình ta có:

x + y = 2 + (-4) = 2 < 2 (thỏa mãn), x 2y = 2- 2 . (-4) = 10 > 4 (thỏa mãn), x = 2 > 0 (thỏa mãn).

Vậy chọn phương án D.

Câu 7

Điểm nào dưới đây thuộc miền nghiệm của hệ bất phương trình Điểm nào dưới đây thuộc miền nghiệm của hệ bất phương trình ? (- x + y nhỏ hơn hoặc bằng 2; x - 2y lớn hơn hoặc 1; y nhỏ hơn hoặc bằng 0 (ảnh 1)?

Lời giải

Đáp án đúng là: C

Các phương án A, B, D có giá trị của y > 0 nên không thỏa mãn điều kiện y ≤ 0.

Thay x = 4; y = -1 vào hệ bất phương trình ta được:

-x + y = -4 + (-1) = -5 < 2 (thỏa mãn); x- 2y = 4 -2 . (-1) = 6 > 1 (thỏa mãn), -1 < 0 (thỏa mãn).

Vậy chọn phương án D.

Câu 8

Miền nghiệm của hệ bất phương trình nào dưới đây là miền tam giác ABC (miền không bị gạch)?

trang 25 sách bài tập Toán 10 tập 1: Miền nghiệm của hệ bất phương trình nào dưới đây là miền tam giác ABC (miền không bị gạch)?  (ảnh 1)

Lời giải

Đáp án đúng là: B

Gọi phương trình đường thẳng AB là d1: y = ax + b.

Do A và B thuộc d1 nên trang 25 sách bài tập Toán 10 tập 1: Miền nghiệm của hệ bất phương trình nào dưới đây là miền tam giác ABC (miền không bị gạch)?  (ảnh 2)

trang 25 sách bài tập Toán 10 tập 1: Miền nghiệm của hệ bất phương trình nào dưới đây là miền tam giác ABC (miền không bị gạch)?  (ảnh 3)

trang 25 sách bài tập Toán 10 tập 1: Miền nghiệm của hệ bất phương trình nào dưới đây là miền tam giác ABC (miền không bị gạch)?  (ảnh 4)

Suy ra phương trình đường thẳng AB là y = -x + 1 hay x + y = 1.

Gọi phương trình đường thẳng BC là d2: y = cx + d.

Do B và C thuộc d2 nên trang 25 sách bài tập Toán 10 tập 1: Miền nghiệm của hệ bất phương trình nào dưới đây là miền tam giác ABC (miền không bị gạch)?  (ảnh 5)

trang 25 sách bài tập Toán 10 tập 1: Miền nghiệm của hệ bất phương trình nào dưới đây là miền tam giác ABC (miền không bị gạch)?  (ảnh 6)

trang 25 sách bài tập Toán 10 tập 1: Miền nghiệm của hệ bất phương trình nào dưới đây là miền tam giác ABC (miền không bị gạch)?  (ảnh 7)

Suy ra phương trình đường thẳng BC là y = x -1 hay x - y = 1.

Đường thẳng AC trùng với trục Oy nên phương trình đường thẳng AC là x = 0.

Ta thấy điểm (0,5; 0) là điểm thuộc miền nghiệm của hệ.

Thay x = 0,5; y = 0 vào biểu thức x + y được 0,5 < 1.

Suy ra bất phương trình thỏa mãn miền nghiệm trên là x + y ≤ 1 (1).

Thay x = 0,5; y = 0 vào biểu thức x - y được 0,5 < 1.

Suy ra bất phương trình thỏa mãn miền nghiệm trên là x - y ≤ 1 (2).

Thay x = 0,5; y = 0 vào biểu thức x được 0,5 > 0.

Suy ra bất phương trình thỏa mãn miền nghiệm trên là x ≥ 0 (3).

Từ (1), (2) và (3) ta có hệ bất phương trình trang 25 sách bài tập Toán 10 tập 1: Miền nghiệm của hệ bất phương trình nào dưới đây là miền tam giác ABC (miền không bị gạch)?  (ảnh 8).

Vậy chọn phương án B.

Câu 9

Miền nghiệm của hệ bất phương trình Miền nghiệm của hệ bất phương trình  là x lớn hơn hoặc bằng  - 1; x + y nhỏ hơn hoặc bằng 0; y lớn hơn hoặc bằng 0 (ảnh 1)

Lời giải

Đáp án đúng là: B

Biểu diễn tập nghiệm của các bất phương trình trên mặt phẳng tọa độ:

Vẽ đường thẳng d1: x = -1 là một đường thẳng song song với trục Oy và đi qua điểm có hoành độ bằng -1.

Chọn điểm I(1; 1) d1 và thay vào biểu thức x ta được 1 > -1.

Suy ra miền nghiệm của bất phương trình x ≥ 1 là nửa mặt phẳng bờ d1 chứa điểm I(1; 1).

• Vẽ đường thẳng d2: x + y = 0 bằng cách vẽ một đường thẳng đi qua hai điểm (0; 0) và (-1; 1).

Chọn điểm I(1; 1) d2 và thay vào biểu thức x + y ta được 1 + 1 = 2 > 0.

Suy ra miền nghiệm của bất phương trình x + y ≤ 0 là nửa mặt phẳng bờ d2 không chứa điểm I(1; 1).

• Đường thẳng d3: y = 0 trùng với trục Ox.

Chọn điểm I(1; 1) d3 và thay vào biểu thức y ta được 1 > 0.

Suy ra miền nghiệm của bất phương trình y ≥ 0 là nửa mặt phẳng bờ d3 chứa điểm I(1; 1).

Khi đó miền nghiệm của hệ là miền không bị gạch như hình vẽ dưới đây:

Miền nghiệm của hệ bất phương trình  là x lớn hơn hoặc bằng  - 1; x + y nhỏ hơn hoặc bằng 0; y lớn hơn hoặc bằng 0 (ảnh 2)

Ta thấy miền nghiệm của hệ bất phương trình trên là miền tam giác.

Vậy chọn phương án B.

Câu 10

Miền nghiệm của bất phương trình Miền nghiệm của bất phương trình  là x + y nhỏ hơn hoặc bằng 1; - 3 nhỏ hơn hoặc bằng y nhỏ hơn hoặc bằng 3; - 3 nhỏ hơn hoặc bằng x nhỏ hơn hoặc bằng 3 (ảnh 1)

Lời giải

Đáp án đúng là: D

Biểu diễn tập nghiệm của các bất phương trình trên mặt phẳng tọa độ:

• Vẽ đường thẳng d1: x + y = 1 bằng cách vẽ đường thẳng đi qua hai điểm (0; 1) và (1; 0).

Chọn điểm O(0; 0) d1 và thay vào biểu thức x + y được 0 < 1.

Suy ra miền nghiệm của bất phương trình x + y ≤ 1 là nửa mặt phẳng bờ d1 chứa điểm O(0; 0).

• Đường thẳng d2: y = -3 là đường thẳng song song với trục Ox và đi qua điểm có hoành độ bằng -3.

Chọn điểm O(0; 0) d2 và thay vào biểu thức y được 0 > 3.

Suy ra miền nghiệm của bất phương trình y ≥ 3 là nửa mặt phẳng bờ d2 chứa điểm O(0; 0).

• Đường thẳng d3: y = 3 là đường thẳng song song với trục Ox và đi qua điểm có hoành độ bằng 3.

Chọn điểm O(0; 0) và thay vào biểu thức y được 0 < 3.

Suy ra miền nghiệm của bất phương trình y ≤ 3 là nửa mặt phẳng bờ d3 chứa điểm O(0; 0).

• Đường thẳng d4: x = -3 là đường thẳng song song với trục Oy và đi qua điểm có tung độ bằng -3.

Chọn điểm O(0; 0) d4 và thay vào biểu thức x được 0 > -3.

Suy ra miền nghiệm của bất phương trình x ≥ -3 là nửa mặt phẳng bờ d4 chứa điểm O(0; 0).

• Đường thẳng d5: x = 3 là đường thẳng song song với trục Oy và đi qua điểm có tung độ bằng 3.

Chọn điểm O(0; 0) và thay vào biểu thức x được 0 < 3.

Suy ra miền nghiệm của bất phương trình x ≤ 3 là nửa mặt phẳng bờ d5 chứa điểm O(0; 0).

Khi đó miền nghiệm của hệ là miền không bị gạch như hình vẽ dưới đây:

Miền nghiệm của bất phương trình  là x + y nhỏ hơn hoặc bằng 1; - 3 nhỏ hơn hoặc bằng y nhỏ hơn hoặc bằng 3; - 3 nhỏ hơn hoặc bằng x nhỏ hơn hoặc bằng 3 (ảnh 2)

Ta thấy miền nghiệm của hệ là miền ngũ giác.

Vậy chọn phương án D.

Câu 11

trMiền nghiệm của hệ bất phương trình Miền nghiệm của hệ bất phương trình  là x + y nhỏ hơn hoặc bằng 10; - 3 nhỏ hơn hoặc bằng y nhỏ hơn hoặc bằng 3; - 3 nhỏ hơn hoặc bằng x nhỏ hơn hoặc bằng 3 (ảnh 1)

Lời giải

Đáp án đúng là: C

Biểu diễn tập nghiệm của các bất phương trình trên mặt phẳng tọa độ:

• Vẽ đường thẳng d1: x + y = 10 bằng cách vẽ đường thẳng đi qua hai điểm (4; 6) và (5; 5).

Chọn điểm O(0; 0) d1 và thay vào biểu thức x + y được 0 < 10.

Suy ra miền nghiệm của bất phương trình x + y ≤ 10 là nửa mặt phẳng bờ d1 chứa điểm O(0; 0).

• Đường thẳng d2: y = -3 là đường thẳng song song với trục Ox và đi qua điểm có hoành độ bằng 3.

Chọn điểm O(0; 0) d2 và thay vào biểu thức y được 0 > -3.

Suy ra miền nghiệm của bất phương trình y ≥ -3 là nửa mặt phẳng bờ d2 chứa điểm O(0; 0).

• Đường thẳng d3: y = 3 là đường thẳng song song với trục Ox và đi qua điểm có hoành độ bằng 3.

Chọn điểm O(0; 0) và thay vào biểu thức y được 0 < 3.

Suy ra miền nghiệm của bất phương trình y ≤ 3 là nửa mặt phẳng bờ d3 chứa điểm O(0; 0).

• Đường thẳng d4: x = -3 là đường thẳng song song với trục Oy và đi qua điểm có tung độ bằng -3.

Chọn điểm O(0; 0) d4 và thay vào biểu thức x được 0 > -3.

Suy ra miền nghiệm của bất phương trình x ≥ -3 là nửa mặt phẳng bờ d4 chứa điểm O(0; 0).

• Đường thẳng d5: x = 3 là đường thẳng song song với trục Oy và đi qua điểm có tung độ bằng 3.

Chọn điểm O(0; 0) và thay vào biểu thức x được 0 < 3.

Suy ra miền nghiệm của bất phương trình x ≤ 3 là nửa mặt phẳng bờ d5 chứa điểm O(0; 0).

Khi đó miền nghiệm của hệ là miền không bị gạch như hình vẽ dưới đây:

Miền nghiệm của hệ bất phương trình  là x + y nhỏ hơn hoặc bằng 10; - 3 nhỏ hơn hoặc bằng y nhỏ hơn hoặc bằng 3; - 3 nhỏ hơn hoặc bằng x nhỏ hơn hoặc bằng 3 (ảnh 2)

Ta thấy miền nghiệm của hệ là miền tứ giác.

Vậy chọn đáp án C.

Câu 12

Giá trị lớn nhất của biểu thức F(x; y) = 3x + y với (x; y) thuộc miền nghiệm của hệ bất phương trình Giá trị lớn nhất của biểu thức F(x; y) = 3x + y với (x; y) thuộc miền nghiệm của hệ bất phương trình  là (ảnh 1)

Lời giải

Đáp án đúng là: B

Biểu diễn tập nghiệm của các bất phương trình trên mặt phẳng tọa độ:

• Đường thẳng d1: x = -1 là đường thẳng song song với trục Oy và đi qua điểm có hoành độ bằng -1.

Chọn điểm I(0; 1) d1 và thay vào biểu thức x được 0 > -1.

Suy ra miền nghiệm của bất phương trình x ≥ -1 là nửa mặt phẳng bờ d1 chứa điểm I(0; 1).

• Vẽ đường thẳng d2: x + y = 2 bằng cách vẽ một đường thẳng đi qua hai điểm (0; 2) và (2; 0).

Chọn điểm I(0; 1) d2 và thay vào biểu thức x + y được 1 < 2.

Suy ra miền nghiệm của bất phương trình x + y ≤ 2 là nửa mặt phẳng bờ d2 chứa điểm I(0; 1).

• Đường thẳng d3: y = 0 là đường thẳng trùng với trục Ox.

Chọn điểm I(0; 1) d3 và thay vào biểu thức y được 1 > 0.

Suy ra miền nghiệm của bất phương trình y ≥ 0 là nửa mặt phẳng bờ d3 chứa điểm I(0; 1).

Khi đó miền nghiệm của hệ là miền không bị gạch như hình vẽ dưới đây:

Giá trị lớn nhất của biểu thức F(x; y) = 3x + y với (x; y) thuộc miền nghiệm của hệ bất phương trình  là (ảnh 2)

Miền nghiệm của hệ bất phương trình là miền tam giác với các đỉnh (-1; 3), (-1; 0) và (2; 0).

Ta có F(-1; 3) = 3 . (-1) + 3 = 0;

F(-1; 0) = 3 . (-1) + 0 = 3;

F(2; 0) = 3 . 2 + 0 = 6.

Do đó giá trị F(x; y) lớn nhất bằng 6 với x = 2; y = 0.

Vậy chọn phương án B.

Câu 13

Giá trị nhỏ nhất của biểu thức F(x; y) = -x + 4y với (x; y) thuộc miền nghiệm của hệ bất phương trình trang 26 sách bài tập Toán 10 tập 1: Giá trị nhỏ nhất của biểu thức F(x; y) = -x + 4y với (x; y) thuộc miền nghiệm của hệ bất phương trình  là (ảnh 1)

Lời giải

Đáp án đúng là: A

Biểu diễn tập nghiệm của các bất phương trình trên mặt phẳng tọa độ:

• Đường thẳng d1: x = 1 là đường thẳng song song với trục Oy và đi qua điểm có hoành độ bằng 1.

Chọn điểm I(1,5; 1) d1 và thay vào biểu thức x ta được 1,5 > 1.

Suy ra miền nghiệm của bất phương trình x ≥ 1 là nửa mặt phẳng bờ d1 có chứa điểm I(1,5; 1).

• Đường thẳng d2: x = 2 là đường thẳng song song với trục Oy và đi qua điểm có hoành độ bằng 2.

Chọn điểm I(1,5; 1) d2 và thay vào biểu thức x ta được 1,5 < 2.

Suy ra miền nghiệm của bất phương trình x ≤ 2 là nửa mặt phẳng bờ d2 có chứa điểm I(1,5; 1).

• Đường thẳng d3: y = 0 là đường thẳng trùng với trục Ox.

Chọn điểm I(1,5; 1) d3 và thay vào biểu thức y ta được 1 > 0.

Suy ra miền nghiệm của bất phương trình y ≥ 0 là nửa mặt phẳng bờ d3 có chứa điểm I(1,5; 1).

• Đường thẳng d4: y = 3 là đường thẳng song song với trục Ox và đi qua điểm có tung độ bằng 3.

Chọn điểm I(1,5; 1) d3 và thay vào biểu thức y ta được 1 < 3.

Suy ra miền nghiệm của bất phương trình y ≤ 3 là nửa mặt phẳng bờ d4 có chứa điểm I(1,5; 1).

Khi đó miền nghiệm của hệ là miền không bị gạch như hình vẽ dưới đây:

trang 26 sách bài tập Toán 10 tập 1: Giá trị nhỏ nhất của biểu thức F(x; y) = -x + 4y với (x; y) thuộc miền nghiệm của hệ bất phương trình  là (ảnh 2)

Miền nghiệm của hệ bất phương trình trên là miền tứ giác với các đỉnh (1; 0), (1; 3), (2; 3) và (2; 0).

Ta có:

F(1; 0) = -1 + 4 . 0 = 1;

F(1; 3) = -1 + 4 . 3 = 11;

F(2; 3) = -2 + 4 . 3 = 10;

F(2; 0) = -2 + 4 . 0 = 2.

Do đó giá trị F(x; y) nhỏ nhất bằng -2 khi x = 2; y = 0.

Vậy chọn phương án A.

Câu 14

Tổng của giá trị lớn nhất và giá trị nhỏ nhất của biểu thức F(x; y) = x + 5y với (x; y) thuộc miền nghiệm của hệ bất phương trình Tổng của giá trị lớn nhất và giá trị nhỏ nhất của biểu thức F(x; y) = x + 5y với (x; y) thuộc miền nghiệm của hệ bất phương trình (ảnh 1)

Lời giải

Đáp án đúng là: B

Biểu diễn tập nghiệm của các bất phương trình trên mặt phẳng tọa độ:

• Đường thẳng d1: y = -2 là đường thẳng song song với trục Ox và đi qua điểm có tung độ bằng 2.

Chọn điểm O(0; 0) d1 và thay vào biểu thức y được 0 > -2.

Suy ra miền nghiệm của bất phương trình -2 ≤ y là nửa mặt phẳng bờ d1 chứa điểm O(0; 0).

• Đường thẳng d2: y = 2 là đường thẳng song song với trục Ox và đi qua điểm có tung độ bằng 2.

Chọn điểm O(0; 0) d2 và thay vào biểu thức y được 0 < 2.

Suy ra miền nghiệm của bất phương trình y ≤ 2 là nửa mặt phẳng bờ d2 chứa điểm O(0; 0).

• Vẽ đường thẳng d3: x + y = 4 bằng cách vẽ đường thẳng đi qua hai điểm (0; 4) và (4; 0).

Chọn điểm O(0; 0) d3 và thay vào biểu thức x + y được 0 < 4.

Suy ra miền nghiệm của bất phương trình x + y ≤ 4 là nửa mặt phẳng bờ d3 chứa điểm O(0; 0).

• Vẽ đường thẳng d4: y - x = 4 bằng cách vẽ đường thẳng đi qua hai điểm (0; 4) và (1; 5).

Chọn điểm O(0; 0) d4 và thay vào biểu thức y - x được 0 < 4.

Suy ra miền nghiệm của bất phương trình y - x ≤ 4 là nửa mặt phẳng bờ d4 chứa điểm O(0; 0).

Khi đó miền nghiệm của hệ là miền không bị gạch như hình vẽ dưới đây:

Tổng của giá trị lớn nhất và giá trị nhỏ nhất của biểu thức F(x; y) = x + 5y với (x; y) thuộc miền nghiệm của hệ bất phương trình (ảnh 2)

Ta thấy miền nghiệm của hệ bất phương trình trên là miền tứ giác với các đỉnh (-6; -2), (-2; 2), (2;2) và (6; -2).

Ta có:

F(-6; -2) = -6 + 5 . (-2) = -16;

F(-2; 2) = -2 + 5 . 2 = 8;

F(2; 2) = 2 + 5 . 2 = 12;

F(6; -2) = 6 + 5 . (-2) = -4.

Do đó giá trị lớn nhất của F(x; y) = 12 và giá trị nhỏ nhất của F(x; y) = -16.

Suy ra tổng của giá trị lớn nhất và giá trị nhỏ nhất của biểu thức F(x; y) với (x; y) thuộc miền nghiệm của hệ bất phương trình trên là 12 + (-16) = -4.

Vậy chọn phương án B.

Câu 15

Một hợp tác xã chăn nuôi dự định trộn hai loại thức ăn gia súc X và Y để tạo thành thức ăn hỗn hợp cho gia súc. Giá một bao loại X là 250 nghìn đồng, giá một bao loại Y là 200 nghìn đồng. Mỗi bao loại X chứa 2 đơn vị chất dinh dưỡng A, 2 đơn vị chất dinh dưỡng B và 2 đơn vị chất dinh dưỡng C. Mỗi bao loại Y chứa 1 đơn vị chất dinh dưỡng A, 9 đơn vị chất dinh dưỡng B và 3 đơn vị chất dinh dưỡng C. Tìm chi phí nhỏ nhất để mua hai loại thức ăn gia súc X và Y sao cho hỗn hợp thu được chứa tối thiểu 12 đơn vị chất dinh dưỡng A, 36 đơn vị chất dinh dưỡng B và 24 đơn vị chất dinh dưỡng C.

Lời giải

Đáp án đúng là: A

Gọi số bao loại X và số bao loại Y lần lượt là x bao và y bao (x, y ℕ).

Mỗi bao loại X chứa 2 đơn vị chất dinh dưỡng A, 2 đơn vị chất dinh dưỡng B và 2 đơn vị chất dinh dưỡng C nên x bao loại X chứa 2x đơn vị chất dinh dưỡng A, 2x đơn vị chất dinh dưỡng B và 2x đơn vị chất dinh dưỡng C.

Mỗi bao loại Y chứa 1 đơn vị chất dinh dưỡng A, 9 đơn vị chất dinh dưỡng B và 3 đơn vị chất dinh dưỡng C nên y bao loại Y chứa y đơn vị chất dinh dưỡng A, 9y đơn vị chất dinh dưỡng B và 3y đơn vị chất dinh dưỡng C.

Hỗn hợp thu được chứa tối thiểu 12 đơn vị chất dinh dưỡng A, 36 đơn vị chất dinh dưỡng B và 24 đơn vị chất dinh dưỡng C nên 2x + y ≥ 12; 2x + 9y ≥ 36; 2x + 3y ≥ 24.

Khi đó ta có hệ bất phương trình sau Một hợp tác xã chăn nuôi dự định trộn hai loại thức ăn gia súc X và Y để tạo thành thức ăn hỗn hợp cho gia súc. Giá một bao loại X là 250 nghìn đồng, giá  (ảnh 1)

F(x; y) = 250x + 200y (triệu đồng).

Biểu diễn tập nghiệm của các bất phương trình trên mặt phẳng tọa độ:

• Đường thẳng d1: x = 0 là đường thẳng trùng với trục Oy.

Chọn điểm I(5; 5) d1 và thay vào biểu thức x ta được 5 > 0.

Suy ra miền nghiệm của bất phương trình x ≥ 0 là nửa mặt phẳng bờ d1 chứa điểm I(5; 5).

• Đường thẳng d2: y = 0 là đường thẳng trùng với trục Ox.

Chọn điểm I(5; 5) d2 và thay vào biểu thức y ta được 5 > 0.

Suy ra miền nghiệm của bất phương trình y ≥ 0 là nửa mặt phẳng bờ d2 chứa điểm I(5; 5).

• Vẽ đường thẳng d3: 2x + y = 12 bằng cách vẽ đường thẳng đi qua hai điểm (6; 0) và (5; 2).

Chọn điểm I(5; 5) d3 và thay vào biểu thức 2x + y ta được 2 . 5 + 5 = 15 > 12.

Suy ra miền nghiệm của bất phương trình 2x + y ≥ 12 là nửa mặt phẳng bờ d3 chứa điểm I(5; 5).

• Vẽ đường thẳng d4: 2x + 9y = 36 bằng cách vẽ đường thẳng đi qua hai điểm (0; 4) và (4,5; 3).

Chọn điểm I(5; 5) d4 và thay vào biểu thức 2x + 9y ta được 2 . 5 + 9 . 5 = 55 > 36.

Suy ra miền nghiệm của bất phương trình 2x + 9y ≥ 36 là nửa mặt phẳng bờ d4 chứa điểm I(5; 5).

• Vẽ đường thẳng d5: 2x + 3y = 24 bằng cách vẽ đường thẳng đi qua hai điểm (3; 6) và (6; 4).

Chọn điểm I(5; 5) d5 và thay vào biểu thức 2x + 3y ta được 2 . 5 + 3 . 5 = 25 > 24.

Suy ra miền nghiệm của bất phương trình 2x + 3y ≥ 24 là nửa mặt phẳng bờ d5 chứa điểm I(5; 5).

Khi đó miền nghiệm của hệ là miền không bị gạch như hình vẽ dưới đây:

Một hợp tác xã chăn nuôi dự định trộn hai loại thức ăn gia súc X và Y để tạo thành thức ăn hỗn hợp cho gia súc. Giá một bao loại X là 250 nghìn đồng, giá  (ảnh 2)

Miền nghiệm của hệ được giới hạn bởi các điểm (0; 12); (3; 6); (9; 2); (18; 0).

Ta có:

F(0; 12) = 250 . 0 + 200 . 12 = 2 400;

F(3; 6) = 250 . 3 + 200 . 6 = 1 950;

F(9; 2) = 250 . 9 + 200 . 2 = 2 650;

F(18; 0) = 250 . 18 + 200 . 0 = 4 500.

Khi đó ta thấy F(x; y) đạt giá trị nhỏ nhất bằng 1 950 tại x = 3; y = 6.

Vậy chi phí nhỏ nhất để mua hai loại thức ăn là 1,95 triệu đồng.

Câu 16

B. Tự luận

Biểu diễn miền nghiệm của các bất phương trình bậc nhất hai ẩn sau trên mặt phẳng tọa độ:

x + y ≥ -4;

Lời giải

Lời giải:

Biểu diễn tập nghiệm của bất phương trình x + y ≥ -4 trên mặt phẳng tọa độ:

• Vẽ đường thẳng d1: x + y = -4 bằng cách vẽ đường thẳng đi qua hai điểm (0; -4) và (-4; 0).

• Chọn điểm O(0; 0) d1 và thay vào biểu thức x + y ta được 0 > -4.

Suy ra miền nghiệm của bất phương trình x + y ≥ -4 là nửa mặt phẳng bờ d1 chứa điểm O(0; 0).

Biểu diễn miền nghiệm của các bất phương trình bậc nhất hai ẩn sau trên mặt phẳng tọa độ: x + y ≥ -4 (ảnh 1)

 

Câu 17

Biểu diễn miền nghiệm của các bất phương trình bậc nhất hai ẩn sau trên mặt phẳng tọa độ:

2x - y 5;

Lời giải

Lời giải:

Biểu diễn tập nghiệm của bất phương trình 2x - y 5 trên mặt phẳng tọa độ:

Vẽ đường thẳng d1: 2x - y = 5 bằng cách vẽ đường thẳng đi qua hai điểm (0; -5) và (3; 1).

Chọn điểm O(0; 0) Ï d1 và thay vào biểu thức 2x - y ta được 0 < 5.

Suy ra miền nghiệm của bất phương trình 2x - y 5 là nửa mặt phẳng bờ d1 chứa điểm O(0; 0).

Media VietJack

Câu 18

Biểu diễn miền nghiệm của các bất phương trình bậc nhất hai ẩn sau trên mặt phẳng tọa độ:

x + 2y < 0;

Lời giải

Lời giải

Biểu diễn tập nghiệm của bất phương trình x + 2y < 0 trên mặt phẳng tọa độ:

Vẽ đường thẳng d1: x + 2y = 0 bằng cách vẽ đường thẳng đi qua hai điểm (0; 0) và (2; -1).

Chọn điểm I(1; 1) Ï d1 và thay vào biểu thức x + 2y ta được 1 + 2 . 1 = 3 > 0.

Suy ra miền nghiệm của bất phương trình x + 2y < 0 là nửa mặt phẳng bờ d1 không chứa điểm I(1; 1) và bỏ đi đường thẳng d1.

Media VietJack

Câu 19

Biểu diễn miền nghiệm của các bất phương trình bậc nhất hai ẩn sau trên mặt phẳng tọa độ:

-x + 2y > 0.

Lời giải

Lời giải:

Biểu diễn tập nghiệm của bất phương trình -x + 2y > 0 trên mặt phẳng tọa độ:

Vẽ đường thẳng d1: -x + 2y = 0 bằng cách vẽ đường thẳng đi qua hai điểm (0; 0) và (2; 1).

Chọn điểm I(1; 1) d1 và thay vào biểu thức -x + 2y ta được 1 > 0.

Suy ra miền nghiệm của bất phương trình -x + 2y > 0 là nửa mặt phẳng bờ d1 chứa điểm I(1; 1) và bỏ đi đường thẳng d1.

Media VietJack

Câu 20

Biểu diễn miền nghiệm của các hệ bất phương trình bậc nhất hai ẩn sau trên mặt phẳng tọa độ:

Biểu diễn miền nghiệm của các hệ bất phương trình bậc nhất hai ẩn sau trên mặt phẳng tọa độ:0 nhỏ hơn bằng x nhỏ hơn bằng 10; y > 0; x - y > 4 (ảnh 1)

Lời giải

Lời giải:

Biểu diễn tập nghiệm của các bất phương trình trên mặt phẳng tọa độ:

Đường thẳng d1: x = 0 là đường thẳng trùng với trục Oy.

Chọn điểm I(1; 1) d1 và thay vào biểu thức x ta được 1 > 0.

Suy ra miền nghiệm của bất phương trình x 0 là nửa mặt phẳng bờ d1 chứa điểm I(1; 1).

Đường thẳng d2: x = 10 là đường thẳng song song với trục Oy và đi qua điểm có hoành độ bằng 10.

Chọn điểm I(1; 1) d2 và thay vào biểu thức x ta được 1 < 10.

Suy ra miền nghiệm của bất phương trình x 10 là nửa mặt phẳng bờ d2 chứa điểm I(1; 1).

Đường thẳng d3: y = 0 là đường thẳng trùng với trục Ox.

Chọn điểm I(1; 1) d3 và thay vào biểu thức y ta được 1 > 0.

Suy ra miền nghiệm của bất phương trình y > 0 là nửa mặt phẳng bờ d3 chứa điểm I(1; 1) và bỏ đi đường thẳng d3.

Vẽ đường thẳng d4: x - y = 4 bằng cách vẽ đường thẳng đi qua hai điểm (4; 0) và (0; -4).

Chọn điểm I(1; 1) d4 và thay vào biểu thức x - y ta được 0 < 4.

Suy ra miền nghiệm của bất phương trình x - y > 4 là nửa mặt phẳng bờ d4 không chứa điểm I(1; 1) và bỏ đi đường thẳng d4.

Khi đó miền nghiệm của hệ là miền không bị gạch như hình vẽ dưới đây:

Biểu diễn miền nghiệm của các hệ bất phương trình bậc nhất hai ẩn sau trên mặt phẳng tọa độ:0 nhỏ hơn bằng x nhỏ hơn bằng 10; y > 0; x - y > 4 (ảnh 2)

 

Câu 21

Biểu diễn miền nghiệm của các hệ bất phương trình bậc nhất hai ẩn sau trên mặt phẳng tọa độ:

\[\left\{ \begin{array}{l}0 \le y \le 1\\x + y \le 2\\y - x \le 2\end{array} \right.\];

Lời giải

Lời giải

Biểu diễn tập nghiệm của các bất phương trình trên mặt phẳng tọa độ:

Đường thẳng d1: y = 0 là đường thẳng trùng với trục Ox.

Chọn điểm I(0; 0,5) d1 và thay vào biểu thức y ta được 0,5 > 0.

Suy ra miền nghiệm của bất phương trình y 0 là nửa mặt phẳng bờ d1 chứa điểm I(0; 0,5).

Đường thẳng d2: y = 1 là đường thẳng song song với trục Ox và đi qua điểm có tung độ bằng 1.

Chọn điểm I(0; 0,5) d2 và thay vào biểu thức y ta được 0,5 < 1.

Suy ra miền nghiệm của bất phương trình y 1 là nửa mặt phẳng bờ d2 chứa điểm I(0; 0,5).

Vẽ đường thẳng d3: x + y = 2 bằng cách vẽ đường thẳng đi qua hai điểm (2; 0) và (0; 2).

Chọn điểm I(0; 0,5) d3 và thay vào biểu thức x + y ta được 0,5 < 2.

Suy ra miền nghiệm của bất phương trình x + y 2 là nửa mặt phẳng bờ d3 chứa điểm I(0; 0,5).

Vẽ đường thẳng d4: y - x = 2 bằng cách vẽ đường thẳng đi qua hai điểm (0; 2) và (-2; 0).

Chọn điểm I(0; 0,5) d4 và thay vào biểu thức y - x ta được 0,5 < 2.

Suy ra miền nghiệm của bất phương trình y - x 2 là nửa mặt phẳng bờ d4 chứa điểm I(0; 0,5).

Khi đó miền nghiệm của hệ là miền không bị gạch như hình vẽ dưới đây:

Media VietJack

Câu 22

Biểu diễn miền nghiệm của các hệ bất phương trình bậc nhất hai ẩn sau trên mặt phẳng tọa độ:

\[\left\{ \begin{array}{l}x \ge 0\\4{\rm{x}} - 6y < 0\\2{\rm{x}} - 3y \ge 1\end{array} \right.\].

Lời giải

lời giải

Biểu diễn tập nghiệm của các bất phương trình trên mặt phẳng tọa độ:

Đường thẳng d1: x = 0 là đường thẳng trùng với trục Oy.

Chọn điểm I(1; 1) d1 và thay vào biểu thức x ta được 1 > 0.

Suy ra miền nghiệm của bất phương trình x 0 là nửa mặt phẳng bờ d1 chứa điểm I(1; 1).

Vẽ đường thẳng d2: 4x - 6y = 0 bằng cách vẽ đường thẳng đi qua hai điểm (0; 0) và (3; 2).

Chọn điểm I(1; 1) d2 và thay vào biểu thức 4x - 6y ta được -2 < 0.

Suy ra miền nghiệm của bất phương trình 4x - 6y < 0 là nửa mặt phẳng bờ d2 chứa điểm I(1; 1) và bỏ đi đường thẳng d2.

Vẽ đường thẳng d3: 2x - 3y = 1 bằng cách vẽ đường thẳng đi qua hai điểm (2; 1) và (5; 3).

 Chọn điểm I(1; 1) d3 và thay vào biểu thức 2x - 3y ta được -1 < 1.

Suy ra miền nghiệm của bất phương trình 2x - 3y 1 là nửa mặt phẳng bờ d3 không chứa điểm I(1; 1).

Khi đó hệ vô nghiệm vì mặt phẳng tọa độ đều bị gạch.

Media VietJack

Câu 23

Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức F(x; y) = 2x + 3y với (x; y) thuộc miền nghiệm của hệ bất phương trình

trang 27 sách bài tập Toán 10 tập 1: Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức F(x; y) = 2x + 3y với (x; y) thuộc miền nghiệm của hệ bất phương trình . (ảnh 1).

Lời giải

Lời giải:

Biểu diễn tập nghiệm của các bất phương trình trên mặt phẳng tọa độ:

Đường thẳng d1: y = -1 là đường thẳng song song với trục Ox đi qua điểm có tung độ bằng -1.

Chọn điểm O(0; 0) d1 và thay vào biểu thức y ta được 0 > -1.

Suy ra miền nghiệm của bất phương trình y -1 là nửa mặt phẳng bờ d1 chứa điểm O(0; 0).

Đường thẳng d2: y = 1 là đường thẳng song song với trục Ox đi qua điểm có tung độ bằng 1.

Chọn điểm O(0; 0) d2 và thay vào biểu thức y ta được 0 < 1.

Suy ra miền nghiệm của bất phương trình y 1 là nửa mặt phẳng bờ d2 chứa điểm O(0; 0).

Vẽ đường thẳng d3: x + y = 4 bằng cách vẽ đường thẳng đi qua hai điểm (0; 4) và (4; 0).

Chọn điểm O(0; 0) d3 và thay vào biểu thức x + y ta được 0 < 4.

Suy ra miền nghiệm của bất phương trình x + y 4 là nửa mặt phẳng bờ d3 chứa điểm O(0; 0).

Vẽ đường thẳng d4: y - x = 4 bằng cách vẽ đường thẳng đi qua hai điểm (0; 4) và (-4; 0).

Chọn điểm O(0; 0) d4 và thay vào biểu thức y - x ta được 0 < 4.

Suy ra miền nghiệm của bất phương trình y - x 4 là nửa mặt phẳng bờ d4 chứa điểm O(0; 0).

Khi đó miền nghiệm của hệ là miền không bị gạch như hình vẽ dưới đây:

trang 27 sách bài tập Toán 10 tập 1: Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức F(x; y) = 2x + 3y với (x; y) thuộc miền nghiệm của hệ bất phương trình . (ảnh 2)

Ta thấy miền nghiệm của hệ bất phương trình trên là miền tứ giác với các đỉnh (-5; -1), (-3; 1), (3; 1), (5; -1).

Ta có:

F(-5; -1) = 2 . (-5) + 3 . (-1) = -13;

F(-3; 1) = 2 . (-3) + 3 . 1 = -3;

F(3; 1) = 2 . 3 + 3 . 1 = 9;

F(5; -1) = 2 . 5 + 3 . (-1) = 7.

Khi đó giá trị nhỏ nhất của F(x; y) là F(-5; -1) = -13 và giá trị lớn nhất là F(3; 1) = 9.

Câu 24

Một phân xưởng có hai máy chuyên dụng M1 và M2 để sản xuất hai loại sản phẩm A và B theo đơn đặt hàng. Nếu sản xuất được một tấn sản phẩm loại A thì phân xưởng nhận được số tiền lãi là 2 triệu đồng. Nếu sản xuất được một tấn sản phẩm loại B thì phân xưởng nhận được số tiền lãi là 1,6 triệu đồng. Muốn sản xuất một tấn sản phẩm loại A, người ta phải dùng máy M1 trong 3 giờ và máy M2 trong 1 giờ. Muốn sản xuất một tấn sản phẩm loại B, người ta phải dùng máy M1 trong 1 giờ và máy M2 trong 1 giờ. Một máy không thể dùng để sản xuất đồng thời hai loại sản phẩm này. Máy M1 làm việc không quá 6 giờ một ngày và máy M2 làm việc không quá 4 giờ một ngày. Hỏi số tiền lãi lớn nhất mà phân xưởng này có thể thu được trong một ngày là bao nhiêu?

Lời giải

Lời giải:

Gọi số sản phẩm loại A và loại B sản xuất ra lần lượt là x tấn và y tấn (x, y 0).

Để sản xuất x tấn sản phẩm loại A thì máy M1 cần hoạt động trong 3x giờ, máy M2 cần hoạt động trong x giờ.

Để sản xuất y tấn sản phẩm loại B thì máy M1 cần hoạt động y giờ, máy M2 cần hoạt động trong y giờ.

Do máy M1 làm việc không quá 6 giờ một ngày và máy M2 làm việc không quá 4 giờ một ngày nên 3x + y 6; x + y 4.

Khi đó ta có hệ phương trình \[\left\{ \begin{array}{l}x \ge 0\\y \ge 0\\3{\rm{x}} + y \le 6\\x + y \le 4\end{array} \right.\]

F(x; y) = 2x + 1,6y (triệu đồng).

Biểu diễn tập nghiệm của các bất phương trình trên mặt phẳng tọa độ:

Đường thẳng d1: x = 0 là đường thẳng trùng với trục Oy.

Chọn điểm I(1; 1) d1 và thay vào biểu thức x ta được 1 > 0.

Suy ra miền nghiệm của bất phương trình x 0 là nửa mặt phẳng bờ d1 chứa điểm I(1; 1).

Đường thẳng d2: y = 0 là đường thẳng trùng với trục Ox.

Chọn điểm I(1; 1) d2 và thay vào biểu thức y ta được 1 > 0.

Suy ra miền nghiệm của bất phương trình y 0 là nửa mặt phẳng bờ d2 chứa điểm I(1; 1).

Vẽ đường thẳng d3: 3x + y = 6 bằng cách vẽ đường thẳng đi qua hai điểm (2; 0) và (1; 3).

Chọn điểm I(1; 1) d3 và thay vào biểu thức 3x + y ta được 4 < 6.

Suy ra miền nghiệm của bất phương trình 3x + y 6 là nửa mặt phẳng bờ d3 chứa điểm I(1; 1).

Vẽ đường thẳng d4: x + y = 4 bằng cách vẽ đường thẳng đi qua hai điểm (4; 0) và (0; 4).

Chọn điểm I(1; 1) d4 và thay vào biểu thức x + y ta được 2 < 4.

Suy ra miền nghiệm của bất phương trình x + y 4 là nửa mặt phẳng bờ d4 chứa điểm I(1; 1).

Khi đó miền nghiệm của hệ là miền không bị gạch như hình vẽ dưới đây:

Một phân xưởng có hai máy chuyên dụng M1 và M2 để sản xuất hai loại sản phẩm A và B theo đơn đặt hàng. Nếu sản xuất được một tấn sản phẩm loại A thì phân  (ảnh 1)

Ta thấy miền nghiệm của hệ bất phương trình trên là miền tứ giác với các đỉnh (0; 0), (0; 4), (1; 3), (2; 0).

Ta có:

F(0; 0) = 2 . 0 + 1,6 . 0 = 0;

F(0; 4) = 2 . 0 + 1,6 . 4 = 6,4;

F(1; 3) = 2 . 1 + 1,6 . 3 = 6,8;

F(2; 0) = 2 . 2 + 1,6 . 0 = 4.

Khi đó giá trị của F(x; y) lớn nhất bằng 6,8.

Vậy số tiền lãi lớn nhất một ngày mà phân xưởng có thể đạt được là 6,8 triệu đồng.

Câu 25

Giả sử một người ăn kiêng cần được cung cấp ít nhất 300 calo, 36 đơn vị vitamin A và 90 đơn vị vitamin C mỗi ngày từ hai loại đồ uống I và II. Mỗi cốc đồ uống I cung cấp 60 calo, 12 đơn vị vitamin A và 10 đơn vị vitamin C.

Mỗi cốc đồ uống II cung cấp 60 calo, 6 đơn vị vitamin A và 30 đơn vị vitamin C. Biết rằng một cốc đồ uống I có giá 12 nghìn đồng và một cốc đồ uống II có giá 15 nghìn đồng.

Gọi x và y tương ứng là số cốc đồ uống I và II. Viết các bất phương trình biểu thị các điều kiện của bài toán thành một hệ bất phương trình và xác định miền nghiệm của hệ đó.

Lời giải

Lời giải:

Do có x cốc đồ uống I và y cốc đồ uống II nên x 0; y 0.

x cốc đồ uống I cung cấp 60x calo, 12x đơn vị vitamin A và 10x đơn vị vitamin C.

y cốc đồ uống II cung cấp 60y calo, 6y đơn vị vitamin A và 30y đơn vị vitamin C.

Do người đó cần cung cấp ít nhất 300 calo, 36 đơn vị vitamin A và 90 đơn vị vitamin C nên 60x + 60y 300; 12x + 6y 36; 10x + 30y 90.

Khi đó ta có hệ bất phương trình sau: \[\left\{ \begin{array}{l}x \ge 0\\y \ge 0\\60{\rm{x}} + 60y \ge 300\\12{\rm{x}} + 6y \ge 36\\10{\rm{x}} + 30y \ge 90\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \ge 0\\y \ge 0\\x + y \ge 5\\2{\rm{x}} + y \ge 6\\x + 3y \ge 9\end{array} \right.\]

Biểu diễn tập nghiệm của các bất phương trình trên mặt phẳng tọa độ:

Đường thẳng d1: x = 0 là đường thẳng trùng với trục Oy.

Chọn điểm I(3; 3) d1 và thay vào biểu thức x ta được 3 > 0.

Suy ra miền nghiệm của bất phương trình x 0 là nửa mặt phẳng bờ d1 chứa điểm I(3; 3).

Đường thẳng d2: y = 0 là đường thẳng trùng với trục Ox.

Chọn điểm I(3; 3) d2 và thay vào biểu thức y ta được 3 > 0.

Suy ra miền nghiệm của bất phương trình y 0 là nửa mặt phẳng bờ d2 chứa điểm I(3; 3).

Vẽ đường thẳng d3: x + y = 5 bằng cách vẽ đường thẳng đi qua hai điểm (0; 5) và (5; 0).

Chọn điểm I(3; 3) Ï d3 và thay vào biểu thức x + y ta được 6 > 5.

Suy ra miền nghiệm của bất phương trình x + y 5 là nửa mặt phẳng bờ d3 chứa điểm I(3; 3).

Vẽ đường thẳng d4: 2x + y = 6 bằng cách vẽ đường thẳng đi qua hai điểm (0; 6) và (1; 4).

Chọn điểm I(3; 3) d4 và thay vào biểu thức x + y ta được 2 . 3 + 3 = 9 > 6.

Suy ra miền nghiệm của bất phương trình 2x + y 5 là nửa mặt phẳng bờ d4 chứa điểm I(3; 3).

Vẽ đường thẳng d5: x + 3y = 9 bằng cách vẽ đường thẳng đi qua hai điểm (0; 3) và (3; 2).

Chọn điểm I(3; 3) d5 và thay vào biểu thức x + 3y ta được 2 + 3 . 3 = 11 > 5.

Suy ra miền nghiệm của bất phương trình x + 3y 9 là nửa mặt phẳng bờ d5 chứa điểm I(3; 3).

Khi đó miền nghiệm của hệ là miền không bị gạch như hình vẽ dưới đây:

Giả sử một người ăn kiêng cần được cung cấp ít nhất 300 calo, 36 đơn vị vitamin A và 90 đơn vị vitamin C mỗi ngày từ hai loại đồ uống I và II. Mỗi cốc đồ  (ảnh 1)

Ta thấy miền nghiệm của hệ bất phương trình trên là miền tứ giác với các đỉnh (0; 6), (1; 4), (3; 2), (9; 0).

Câu 26

Giả sử một người ăn kiêng cần được cung cấp ít nhất 300 calo, 36 đơn vị vitamin A và 90 đơn vị vitamin C mỗi ngày từ hai loại đồ uống I và II. Mỗi cốc đồ uống I cung cấp 60 calo, 12 đơn vị vitamin A và 10 đơn vị vitamin C.

Mỗi cốc đồ uống II cung cấp 60 calo, 6 đơn vị vitamin A và 30 đơn vị vitamin C. Biết rằng một cốc đồ uống I có giá 12 nghìn đồng và một cốc đồ uống II có giá 15 nghìn đồng.

Gọi F (nghìn đồng) là số tiền phải trả cho x cốc đồ uống I và y cốc đồ uống II. Hãy biểu diễn F theo x và y.

Lời giải

lời giải

Chi phí cho hai loại đồ uống là F(x; y) = 12x + 15y (nghìn đồng).

Câu 27

Giả sử một người ăn kiêng cần được cung cấp ít nhất 300 calo, 36 đơn vị vitamin A và 90 đơn vị vitamin C mỗi ngày từ hai loại đồ uống I và II. Mỗi cốc đồ uống I cung cấp 60 calo, 12 đơn vị vitamin A và 10 đơn vị vitamin C.

Mỗi cốc đồ uống II cung cấp 60 calo, 6 đơn vị vitamin A và 30 đơn vị vitamin C. Biết rằng một cốc đồ uống I có giá 12 nghìn đồng và một cốc đồ uống II có giá 15 nghìn đồng.

Biết rằng F đạt giá trị nhỏ nhất trên miền nghiệm tìm được ở câu a tại một trong các đỉnh của miền nghiệm, tìm giá trị nhỏ nhất đó. Từ đó suy ra người đó cần uống bao nhiêu cốc loại I và loại II để chi phí là nhỏ nhất mà vẫn đáp ứng được yêu cầu hằng ngày.

Lời giải

Lời giải

Ta có:

F(0; 6) = 12 . 0 + 15 . 6 = 90;

F(1; 4) = 12 . 1 + 15 . 4 = 72;

F(3; 2) = 12 . 3 + 15 . 2 = 66;

F(9; 0) = 12 . 9 + 15 . 0 = 108.

Giá trị nhỏ nhất của F(x; y) bằng 66 khi x = 3 và y = 2.

Vậy người đó cần uống 3 cốc đồ uống I và 2 cốc đồ uống II để đạt được các mục tiêu đã đề ra.

4.6

137 Đánh giá

50%

40%

0%

0%

0%