Giải SBT Toán 10 Bài 11. Tích vô hướng của hai vectơ có đáp án
53 người thi tuần này 4.6 1.1 K lượt thi 21 câu hỏi
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
🔥 Học sinh cũng đã học
Đề kiểm tra Toán 10 Chân trời sáng tạo Chương 10 có đáp án (Đề 2)
Đề kiểm tra Toán 10 Chân trời sáng tạo Chương 10 có đáp án (Đề 1)
Bài tập ôn tập Toán 10 Chân trời sáng tạo Chương 10 có đáp án
Đề kiểm tra Toán 10 Chân trời sáng tạo Chương 9 có đáp án (Đề 2)
Đề kiểm tra Toán 10 Chân trời sáng tạo Chương 9 có đáp án (Đề 1)
Bài tập ôn tập Toán 10 Chân trời sáng tạo Chương 9 có đáp án
Bộ 10 đề thi cuối kì 2 Toán 10 Chân trời sáng tạo có đáp án - Đề 06
Bộ 10 đề thi cuối kì 2 Toán 10 Chân trời sáng tạo có đáp án - Đề 05
Danh sách câu hỏi:
Lời giải
Lời giải

Tam giác ABC đều có M là trung điểm của BC nên đường trung tuyến AM đồng thời là đường phân giác và đường cao.
\( \Rightarrow \widehat {BAM} = \widehat {MAC} = \frac{1}{2}\widehat {BAC} = \frac{1}{2}.60^\circ = 30^\circ \)
Gọi Ax là tia đối của tia AM, tia Ay là tia đối của tia AB.
Do đó \(\left( {\overrightarrow {MA} ;\overrightarrow {BA} } \right) = \widehat {xAy} = \widehat {BAM} = 30^\circ \)
\(\left( {\overrightarrow {MA} ;\overrightarrow {AC} } \right) = \widehat {xAC} = 180^\circ - \widehat {MAC}\)
\( \Rightarrow \left( {\overrightarrow {MA} ;\overrightarrow {AC} } \right) = 180^\circ - 30^\circ = 150^\circ \)
Khi đó ta có:
• \(\overrightarrow {MA} .\overrightarrow {BA} = \left| {\overrightarrow {MA} } \right|.\left| {\overrightarrow {BA} } \right|.c{\rm{os}}\left( {\overrightarrow {MA} ;\overrightarrow {BA} } \right)\)
\( \Rightarrow \overrightarrow {MA} .\overrightarrow {BA} = MA.BA.c{\rm{os30}}^\circ \)
Xét tam giác BAM vuông tại M, theo định lí Pythagoras ta có:
\(MA = \sqrt {B{A^2} - B{M^2}} = \sqrt {{1^2} - {{\left( {\frac{1}{2}} \right)}^2}} = \frac{{\sqrt 3 }}{2}\)
\( \Rightarrow \overrightarrow {MA} .\overrightarrow {BA} = \frac{{\sqrt 3 }}{2}.1.\frac{{\sqrt 3 }}{2} = \frac{3}{4}.\)
• \(\overrightarrow {MA} .\overrightarrow {AC} = \left| {\overrightarrow {MA} } \right|.\left| {\overrightarrow {AC} } \right|.c{\rm{os}}\left( {\overrightarrow {MA} ;\overrightarrow {AC} } \right)\)
\( \Rightarrow \overrightarrow {MA} .\overrightarrow {AC} = MA.AC.c{\rm{os150}}^\circ \)
\[ \Rightarrow \overrightarrow {MA} .\overrightarrow {AC} = \frac{{\sqrt 3 }}{2}.1.\frac{{ - \sqrt 3 }}{2} = \frac{{ - 3}}{4}.\]
Vậy \(\overrightarrow {MA} .\overrightarrow {BA} = \frac{3}{4}\) và \(\overrightarrow {MA} .\overrightarrow {AC} = \frac{{ - 3}}{4}.\)
Lời giải
Lời giải

• Vì M là trung điểm của BC nên
\(\overrightarrow {AB} + \overrightarrow {AC} = 2\overrightarrow {AM} \)
\( \Rightarrow \overrightarrow {AM} = \frac{1}{2}\left( {\overrightarrow {AB} + \overrightarrow {AC} } \right)\)
• N đối xứng với B qua C nên C là trung điểm của BN
\( \Rightarrow \overrightarrow {AB} + \overrightarrow {AN} = 2\overrightarrow {AC} \)\( \Rightarrow \overrightarrow {AN} = 2\overrightarrow {AC} - \overrightarrow {AB} \)
Khi đó \(\overrightarrow {AM} .\overrightarrow {AN} = \frac{1}{2}\left( {\overrightarrow {AB} + \overrightarrow {AC} } \right).\left( {2\overrightarrow {AC} - \overrightarrow {AB} } \right)\)
\[ = \frac{1}{2}.\left( {2\overrightarrow {AB} .\overrightarrow {AC} - \overrightarrow {AB} .\overrightarrow {AB} + 2\overrightarrow {AC} .\overrightarrow {AC} - \overrightarrow {AC} .\overrightarrow {AB} } \right)\]
\[ = \frac{1}{2}.\left( {2{{\overrightarrow {AC} }^2} - {{\overrightarrow {AB} }^2} + \overrightarrow {AB} .\overrightarrow {AC} } \right)\]
\[ = \frac{1}{2}.\left( {2{{\left| {\overrightarrow {AC} } \right|}^2} - {{\left| {\overrightarrow {AB} } \right|}^2} + \overrightarrow {AB} .\overrightarrow {AC} } \right)\]
Mà \[\overrightarrow {AB} .\overrightarrow {AC} = \left| {\overrightarrow {AB} } \right|.\left| {\overrightarrow {AC} } \right|.cos\left( {\overrightarrow {AB} .\overrightarrow {AC} } \right)\]
\[ = AB.AC.cos\widehat {BAC} = 1.1.\cos 60^\circ = \frac{1}{2}.\]
Do đó \(\overrightarrow {AM} .\overrightarrow {AN} \)\[ = \frac{1}{2}.\left( {2A{C^2} - A{B^2} + \overrightarrow {AB} .\overrightarrow {AC} } \right)\]
\[ = \frac{1}{2}.\left( {{{2.1}^2} - {1^2} + \frac{1}{2}} \right)\]
\( = \frac{1}{2}.\frac{3}{2} = \frac{3}{4}.\)
Vậy \(\overrightarrow {AM} .\overrightarrow {AN} = \frac{3}{4}\)
Lời giải
Lời giải

• Vì P thuộc đoạn thẳng AN thỏa mãn AP = 3PN \( \Rightarrow AP = \frac{3}{4}AN\)
\( \Rightarrow \overrightarrow {AP} = \frac{3}{4}\overrightarrow {AN} = \frac{3}{4}.\left( {2\overrightarrow {AC} - \overrightarrow {AB} } \right)\)
\( \Rightarrow \overrightarrow {AP} = \frac{3}{2}\overrightarrow {AC} - \frac{3}{4}\overrightarrow {AB} \)
• Ta có: \(\overrightarrow {MP} = \overrightarrow {AP} - \overrightarrow {AM} \)
\( = \left( {\frac{3}{2}\overrightarrow {AC} - \frac{3}{4}\overrightarrow {AB} } \right) - \frac{1}{2}\left( {\overrightarrow {AB} + \overrightarrow {AC} } \right)\)
\( = \frac{3}{2}\overrightarrow {AC} - \frac{3}{4}\overrightarrow {AB} - \frac{1}{2}\overrightarrow {AB} - \frac{1}{2}\overrightarrow {AC} \)
\( = \left( {\frac{3}{2}\overrightarrow {AC} - \frac{1}{2}\overrightarrow {AC} } \right) - \left( {\frac{3}{4}\overrightarrow {AB} + \frac{1}{2}\overrightarrow {AB} } \right)\)
\( = \overrightarrow {AC} - \frac{5}{4}\overrightarrow {AB} \)
\( \Rightarrow MP = \left| {\overrightarrow {MP} } \right| = \left| {\overrightarrow {AC} - \frac{5}{4}\overrightarrow {AB} } \right|\)
\( \Rightarrow M{P^2} = {\left( {\overrightarrow {AC} - \frac{5}{4}\overrightarrow {AB} } \right)^2}\)
\( = {\overrightarrow {AC} ^2} - 2.\frac{5}{4}\overrightarrow {AC} .\overrightarrow {AB} + \frac{{25}}{{16}}{\overrightarrow {AB} ^2}\)
\( = A{C^2} + \frac{{25}}{{16}}A{B^2} - \frac{5}{2}\overrightarrow {AC} .\overrightarrow {AB} \)
\( = {1^2} + \frac{{25}}{{16}}{.1^2} - \frac{5}{2}.\frac{1}{2}\)
\( = \frac{{21}}{{16}}\)
\( \Rightarrow MP = \sqrt {\frac{{21}}{{16}}} = \frac{{\sqrt {21} }}{4}.\)
Vậy \(\overrightarrow {AP} = \frac{3}{2}\overrightarrow {AC} - \frac{3}{4}\overrightarrow {AB} ;\)\(\overrightarrow {MP} = \overrightarrow {AC} - \frac{5}{4}\overrightarrow {AB} \) và \(MP = \frac{{\sqrt {21} }}{4}.\)
Lời giải
Lời giải

a) Đặt \(\overrightarrow {AB} = \overrightarrow a ,\overrightarrow {AD} = \overrightarrow b \) khi đó \(\left| {\overrightarrow a } \right| = 1\)và \(\left| {\overrightarrow b } \right| = \sqrt 2 .\)
Vì AB ⊥ AD nên \(\overrightarrow a \bot \overrightarrow b \Leftrightarrow \overrightarrow a .\overrightarrow b = \overrightarrow 0 \)
ABCD là hình chữ nhật nên cũng là hình bình hành nên ta có:
\(\overrightarrow {AC} = \overrightarrow {AB} + \overrightarrow {AD} = \overrightarrow a + \overrightarrow b \) (quy tắc hình bình hành)
M là trung điểm của AD nên \(\overrightarrow {AM} = \frac{1}{2}\overrightarrow {AD} = \frac{1}{2}\overrightarrow b \)
Suy ra \(\overrightarrow {BM} = \overrightarrow {AM} - \overrightarrow {AB} = \frac{1}{2}\overrightarrow b - \overrightarrow a \)
Khi đó \(\overrightarrow {AC} .\overrightarrow {BM} = \left( {\overrightarrow a + \overrightarrow b } \right).\left( {\frac{1}{2}\overrightarrow b - \overrightarrow a } \right)\)
\( = \frac{1}{2}\overrightarrow a .\overrightarrow b - \overrightarrow a .\overrightarrow a + \frac{1}{2}\overrightarrow b .\overrightarrow b - \overrightarrow a .\overrightarrow b \)
\( = \frac{1}{2}\overrightarrow 0 - {\overrightarrow a ^2} + \frac{1}{2}{\overrightarrow b ^2} - \overrightarrow 0 \) (do \(\overrightarrow a .\overrightarrow b = \overrightarrow 0 \))
\( = - {\left| {\overrightarrow a } \right|^2} + \frac{1}{2}{\left| {\overrightarrow b } \right|^2}\)
\( = - {1^2} + \frac{1}{2}.{\left( {\sqrt 2 } \right)^2} = 0\)
Do đó \(\overrightarrow {AC} .\overrightarrow {BM} = 0 \Leftrightarrow \overrightarrow {AC} \bot \overrightarrow {BM} \)
AC ⊥ BM.
Lời giải
Lời giải

• Xét tam giác ABC vuông tại C, theo định lí Pythagore ta có:
AC2 = AB2 + BC2 = 1 + \({\left( {\sqrt 2 } \right)^2}\)= 3
\( \Rightarrow AC = \sqrt 3 \)
Theo hệ thức lượng trong tam giác vuông ta có:
AB2 = AH.AC \( \Rightarrow AH = \frac{{A{B^2}}}{{AC}} = \frac{{{1^2}}}{{\sqrt 3 }} = \frac{{\sqrt 3 }}{3}\)
\[ \Rightarrow \frac{{AH}}{{AC}} = \frac{{\sqrt 3 }}{3}:\sqrt 3 = \frac{1}{3}\]
\( \Rightarrow \overrightarrow {AH} = \frac{1}{3}\overrightarrow {AC} \)
Khi đó \(\overrightarrow {HC} = \frac{2}{3}\overrightarrow {AC} \) và \(\overrightarrow {HA} = - \frac{1}{3}\overrightarrow {AC} \)
Ta có \(\overrightarrow {NB} = \overrightarrow {NA} + \overrightarrow {AB} \) (quy tắc ba điiểm)
Vì N là trung điểm của AH nên \(\overrightarrow {NA} = \frac{1}{2}\overrightarrow {HA} \)
\( \Rightarrow \overrightarrow {NB} = \frac{1}{2}.\left( { - \frac{1}{3}\overrightarrow {AC} } \right) + \overrightarrow {AB} \)
\( = - \frac{1}{6}.\left( {\overrightarrow a + \overrightarrow b } \right) + \overrightarrow a \)
\( = \frac{5}{6}\overrightarrow a - \frac{1}{6}\overrightarrow b \)
• Có N là trung điểm của HA và P là trung điểm của CD, theo kết quả bài 4.12, trang 58, Sách giáo khoa Toán 10, tập một, ta có:
\(\overrightarrow {AD} + \overrightarrow {HC} = 2\overrightarrow {NP} \)\( \Rightarrow \overrightarrow {NP} = \frac{1}{2}\left( {\overrightarrow {AD} + \overrightarrow {HC} } \right)\)
\( \Rightarrow \overrightarrow {NP} = \frac{1}{2}\overrightarrow {AD} + \frac{1}{2}\overrightarrow {HC} \)
\( = \frac{1}{2}\overrightarrow {AD} + \frac{1}{2}.\frac{2}{3}\overrightarrow {AC} \)
\( = \frac{1}{2}\overrightarrow b + \frac{1}{3}.\left( {\overrightarrow a + \overrightarrow b } \right)\)
\( = \frac{1}{3}\overrightarrow a + \frac{5}{6}.\overrightarrow b \)
Khi đó \[\overrightarrow {NB} .\overrightarrow {NP} = \left( {\frac{5}{6}\overrightarrow a - \frac{1}{6}\overrightarrow b } \right).\left( {\frac{1}{3}\overrightarrow a + \frac{5}{6}.\overrightarrow b } \right)\]
\[ = \frac{5}{{18}}{\overrightarrow a ^2} + \frac{{25}}{{36}}\overrightarrow a .\overrightarrow b - \frac{1}{{18}}\overrightarrow a .\overrightarrow b - \frac{5}{{36}}{\overrightarrow b ^2}\]
\[ = \frac{5}{{18}}{\overrightarrow a ^2} + \frac{{25}}{{36}}\overrightarrow a .\overrightarrow b - \frac{1}{{18}}\overrightarrow a .\overrightarrow b - \frac{5}{{36}}{\overrightarrow b ^2}\]
\[ = \frac{5}{{18}}{\left| {\overrightarrow a } \right|^2} + \frac{{25}}{{36}}\overrightarrow 0 - \frac{1}{{18}}\overrightarrow 0 - \frac{5}{{36}}{\left| {\overrightarrow b } \right|^2}\] (do \(\overrightarrow a .\overrightarrow b = \overrightarrow 0 \))
\[ = \frac{5}{{18}}{.1^2} - \frac{5}{{36}}.{\left( {\sqrt 2 } \right)^2}\]
\[ = \frac{5}{{18}} - \frac{5}{{36}}.2 = 0\]
Do đó \[\overrightarrow {NB} .\overrightarrow {NP} = 0 \Rightarrow \overrightarrow {NB} \bot \overrightarrow {NP} \]
NB ⊥ NP.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.