Giải SBT Toán 10 Bài 10. Vectơ trong mặt phẳng tọa độ có đáp án
48 người thi tuần này 4.6 1 K lượt thi 15 câu hỏi
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
🔥 Học sinh cũng đã học
20 câu trắc nghiệm Toán 10 Cánh diều Bài tập cuối chương 7 (Đúng sai - trả lời ngắn) có đáp án
20 câu trắc nghiệm Toán 10 Cánh diều Bài 6. Ba đường conic (Đúng sai - trả lời ngắn) có đáp án
20 câu trắc nghiệm Toán 10 Cánh diều Bài 5. Phương trình đường trò (Đúng sai - trả lời ngắn) có đáp án
20 câu trắc nghiệm Toán 10 Cánh diều Bài 4. Vị trí tương đối và góc giữa hai đường thẳng. Khoảng cách từ một điểm đến một đường thẳng (Đúng sai - trả lời ngắn) có đáp án
20 câu trắc nghiệm Toán 10 Cánh diều Bài 3. Phương trình đường thẳn (Đúng sai - trả lời ngắn) có đáp án
20 câu trắc nghiệm Toán 10 Cánh diều Bài 2. Biểu thức tọa độ của các phép toán vectơ (Đúng sai - trả lời ngắn) có đáp án
20 câu trắc nghiệm Toán 10 Cánh diều Bài 1. Tọa độ của vectơ (Đúng sai - trả lời ngắn) có đáp án
20 câu trắc nghiệm Toán 10 Cánh diều Bài ôn tập cuối chương 6 (Đúng sai - trả lời ngắn) có đáp án
Danh sách câu hỏi:
Lời giải
Lời giải
Cách 1:
Gọi A(xA; yA); B(xB; yB) và C(xC; yC) là tọa độ ba đỉnh của tam giác ABC.
Ta có:
+) M(4; 0) là trung điểm của BC nên \(\left\{ \begin{array}{l}4 = \frac{{{x_B} + {x_C}}}{2}\\0 = \frac{{{y_B} + {y_C}}}{2}\end{array} \right.\)
\( \Rightarrow \left\{ \begin{array}{l}{x_B} + {x_C} = 8\\{y_B} + {y_C} = 0\end{array} \right.\)(1)
+) N(5; 2) là trung điểm của CA nên \[\left\{ \begin{array}{l}5 = \frac{{{x_A} + {x_C}}}{2}\\2 = \frac{{{y_A} + {y_C}}}{2}\end{array} \right.\]
\[ \Rightarrow \left\{ \begin{array}{l}{x_A} + {x_C} = 10\\{y_A} + {y_C} = 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_C} = 10 - {x_A}\\{y_C} = 4 - {y_A}\end{array} \right.\](2)
+) P(2; 3) là trung điểm của AB nên \[\left\{ \begin{array}{l}2 = \frac{{{x_A} + {x_B}}}{2}\\3 = \frac{{{y_A} + {y_B}}}{2}\end{array} \right.\]
\[ \Rightarrow \left\{ \begin{array}{l}{x_A} + {x_B} = 4\\{y_A} + {y_B} = 6\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_B} = 4 - {x_A}\\{y_B} = 6 - {y_A}\end{array} \right.\](3)
Thay (2) và (3) vào (1) ta được:
\(\left\{ \begin{array}{l}\left( {4 - {x_A}} \right) + \left( {10 - {x_A}} \right) = 8\\\left( {6 - {y_A}} \right) + \left( {4 - {y_A}} \right) = 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}14 - 2{x_A} = 8\\10 - 2{y_A} = 0\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}{x_A} = 3\\{y_A} = 5\end{array} \right.\) A(3; 5)
Khi đó \[\left\{ \begin{array}{l}{x_B} = 4 - 3 = 1\\{y_B} = 6 - 5 = 1\end{array} \right.\] B(1; 1)
\[\left\{ \begin{array}{l}{x_C} = 10 - 3 = 7\\{y_C} = 4 - 5 = - 1\end{array} \right.\] C(7; –1)
Vậy A(3; 5), B(1; 1) và C(7; –1).
Cách 2:

Do M, N, P
lần lượt là trung điểm của BC, CA, AB
Nên MN, NP, PM là các đường trung bình của tam giác ABC.
MN // AB, NP // BC, MP // AC.
+) Do MN // BM và NP // BM nên tứ giác MNPB là hình bình hành
\( \Rightarrow \overrightarrow {MB} = \overrightarrow {NP} \)
Gọi B(xB; yB) và có M(4; 0), N(5; 2) và P(2, 3).
\( \Rightarrow \overrightarrow {MB} = \left( {{x_B} - 4;{y_B}} \right)\) và \(\overrightarrow {NP} = \left( {2 - 5;3 - 2} \right) = \left( { - 3;1} \right)\)
Khi đó \(\overrightarrow {MB} = \overrightarrow {NP} \Leftrightarrow \left\{ \begin{array}{l}{x_B} - 4 = - 3\\{y_B} = 1\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}{x_B} = 1\\{y_B} = 1\end{array} \right.\) B(1; 1)
Tương tự ta cũng có A(3; 5) và C(7; –1).
Vậy A(3; 5), B(1; 1) và C(7; –1).
Lời giải
Lời giải
Với A(2;–1), B(1; 4) và C(7; 0) ta có:
+) \(\overrightarrow {AB} = \left( {1 - 2;4 - \left( { - 1} \right)} \right) = \left( { - 1;5} \right)\)
\( \Rightarrow AB = \left| {\overrightarrow {AB} } \right| = \sqrt {{{\left( { - 1} \right)}^2} + {5^2}} = \sqrt {26} \)
+) \(\overrightarrow {BC} = \left( {7 - 1;0 - 4} \right) = \left( {6; - 4} \right)\)
\( \Rightarrow BC = \left| {\overrightarrow {BC} } \right| = \sqrt {{6^2} + {{\left( { - 4} \right)}^2}} = \sqrt {52} = 2\sqrt {13} \)
+) \(\overrightarrow {CA} = \left( {2 - 7; - 1 - 0} \right) = \left( { - 5; - 1} \right)\)
\( \Rightarrow CA = \left| {\overrightarrow {CA} } \right| = \sqrt {{{\left( { - 5} \right)}^2} + {{\left( { - 1} \right)}^2}} = \sqrt {26} \)
Do đó AB = CA \(\left( { = \sqrt {26} } \right)\)
Nên tam giác ABC cân tại A (1)
Mặt khác: \(B{C^2} = {\left( {2\sqrt {13} } \right)^2} = 52\)
Và \(A{B^2} + A{C^2} = {\left( {\sqrt {26} } \right)^2} + {\left( {\sqrt {26} } \right)^2} = 52\)
BC2 = AB2 + AC2
Theo định lí Pythagoras đảo thì tam giác ABC vuông tại A (2)
Từ (1) và (2) suy ra tam giác ABC vuông cân tại A với \(AB = AC = \sqrt {26} ;BC = 2\sqrt {13} .\)
Lời giải
Lời giải

Vì ABC là tam giác vuông cân
Nên để ABDC là hình vuông thì tứ giác ABDC là hình bình hành
\( \Leftrightarrow \overrightarrow {CA} = \overrightarrow {DB} \)
Gọi D(xD; yD) và có A(2;–1), B(1; 4), C(7; 0).
\( \Rightarrow \overrightarrow {CA} = \left( { - 5; - 1} \right)\)và \(\overrightarrow {DB} = \left( {1 - {x_D};4 - {y_D}} \right)\)
Do đó \(\overrightarrow {CA} = \overrightarrow {DB} \Leftrightarrow \left\{ \begin{array}{l} - 5 = 1 - {x_D}\\ - 1 = 4 - {y_D}\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}{x_D} = 6\\{y_D} = 5\end{array} \right.\) D(6; 5).
Vậy tọa độ điểm D cần tìm là D(6; 5).
Lời giải
Lời giải
Gọi P(a; 0) là điểm thuộc tia Ox.
Với M(–2; 1) và N(4; 5) ta có:
+) \(\overrightarrow {PM} = \left( { - 2 - a;1} \right)\)\[ \Rightarrow PM = \left| {\overrightarrow {PM} } \right| = \sqrt {{{\left( { - 2 - a} \right)}^2} + {1^2}} \]
+) \(\overrightarrow {PN} = \left( {4 - a;5} \right)\)\( \Rightarrow PN = \left| {\overrightarrow {PN} } \right| = \sqrt {{{\left( {4 - a} \right)}^2} + {5^2}} \)
Do đó PM = PN \[ \Leftrightarrow \sqrt {{{\left( { - 2 - a} \right)}^2} + {1^2}} = \sqrt {{{\left( {4 - a} \right)}^2} + {5^2}} \]
(–2 – a)2 + 12 = (4 – a)2 + 52
4 + 4a + a2 + 1 = 16 – 8a + a2 + 25
12a = 36
a = 3.
Vậy P(3; 0).
Lời giải
Lời giải
Giả sử điểm Q có tọa độ là Q(x; y).
Với M(–2; 1), N(4; 5) và P(3; 0) ta có:
+) \[\overrightarrow {MQ} = \left( {x + 2;y - 1} \right)\]
+) \[\overrightarrow {PN} = \left( {4 - 3;5 - 0} \right) = \left( {1;5} \right)\]
\[ \Rightarrow 2\overrightarrow {PN} = \left( {2;10} \right)\]
Do đó \[\overrightarrow {MQ} = 2\overrightarrow {PN} \Leftrightarrow \left\{ \begin{array}{l}x + 2 = 2\\y - 1 = 10\end{array} \right.\]
\[ \Leftrightarrow \left\{ \begin{array}{l}x = 0\\y = 11\end{array} \right.\] Q(0; 11).
Vậy Q(0; 11).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.