Giải SBT Toán 10 Bài 10. Vectơ trong mặt phẳng tọa độ có đáp án
45 người thi tuần này 4.6 0.9 K lượt thi 15 câu hỏi
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
🔥 Học sinh cũng đã học
Đề kiểm tra Toán 10 Chân trời sáng tạo Chương 10 có đáp án (Đề 2)
Đề kiểm tra Toán 10 Chân trời sáng tạo Chương 10 có đáp án (Đề 1)
Bài tập ôn tập Toán 10 Chân trời sáng tạo Chương 10 có đáp án
Đề kiểm tra Toán 10 Chân trời sáng tạo Chương 9 có đáp án (Đề 2)
Đề kiểm tra Toán 10 Chân trời sáng tạo Chương 9 có đáp án (Đề 1)
Bài tập ôn tập Toán 10 Chân trời sáng tạo Chương 9 có đáp án
Bộ 10 đề thi cuối kì 2 Toán 10 Chân trời sáng tạo có đáp án - Đề 06
Bộ 10 đề thi cuối kì 2 Toán 10 Chân trời sáng tạo có đáp án - Đề 05
Danh sách câu hỏi:
Lời giải
Lời giải
Cách 1:
Gọi A(xA; yA); B(xB; yB) và C(xC; yC) là tọa độ ba đỉnh của tam giác ABC.
Ta có:
+) M(4; 0) là trung điểm của BC nên \(\left\{ \begin{array}{l}4 = \frac{{{x_B} + {x_C}}}{2}\\0 = \frac{{{y_B} + {y_C}}}{2}\end{array} \right.\)
\( \Rightarrow \left\{ \begin{array}{l}{x_B} + {x_C} = 8\\{y_B} + {y_C} = 0\end{array} \right.\)(1)
+) N(5; 2) là trung điểm của CA nên \[\left\{ \begin{array}{l}5 = \frac{{{x_A} + {x_C}}}{2}\\2 = \frac{{{y_A} + {y_C}}}{2}\end{array} \right.\]
\[ \Rightarrow \left\{ \begin{array}{l}{x_A} + {x_C} = 10\\{y_A} + {y_C} = 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_C} = 10 - {x_A}\\{y_C} = 4 - {y_A}\end{array} \right.\](2)
+) P(2; 3) là trung điểm của AB nên \[\left\{ \begin{array}{l}2 = \frac{{{x_A} + {x_B}}}{2}\\3 = \frac{{{y_A} + {y_B}}}{2}\end{array} \right.\]
\[ \Rightarrow \left\{ \begin{array}{l}{x_A} + {x_B} = 4\\{y_A} + {y_B} = 6\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_B} = 4 - {x_A}\\{y_B} = 6 - {y_A}\end{array} \right.\](3)
Thay (2) và (3) vào (1) ta được:
\(\left\{ \begin{array}{l}\left( {4 - {x_A}} \right) + \left( {10 - {x_A}} \right) = 8\\\left( {6 - {y_A}} \right) + \left( {4 - {y_A}} \right) = 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}14 - 2{x_A} = 8\\10 - 2{y_A} = 0\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}{x_A} = 3\\{y_A} = 5\end{array} \right.\) A(3; 5)
Khi đó \[\left\{ \begin{array}{l}{x_B} = 4 - 3 = 1\\{y_B} = 6 - 5 = 1\end{array} \right.\] B(1; 1)
\[\left\{ \begin{array}{l}{x_C} = 10 - 3 = 7\\{y_C} = 4 - 5 = - 1\end{array} \right.\] C(7; –1)
Vậy A(3; 5), B(1; 1) và C(7; –1).
Cách 2:

Do M, N, P
lần lượt là trung điểm của BC, CA, AB
Nên MN, NP, PM là các đường trung bình của tam giác ABC.
MN // AB, NP // BC, MP // AC.
+) Do MN // BM và NP // BM nên tứ giác MNPB là hình bình hành
\( \Rightarrow \overrightarrow {MB} = \overrightarrow {NP} \)
Gọi B(xB; yB) và có M(4; 0), N(5; 2) và P(2, 3).
\( \Rightarrow \overrightarrow {MB} = \left( {{x_B} - 4;{y_B}} \right)\) và \(\overrightarrow {NP} = \left( {2 - 5;3 - 2} \right) = \left( { - 3;1} \right)\)
Khi đó \(\overrightarrow {MB} = \overrightarrow {NP} \Leftrightarrow \left\{ \begin{array}{l}{x_B} - 4 = - 3\\{y_B} = 1\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}{x_B} = 1\\{y_B} = 1\end{array} \right.\) B(1; 1)
Tương tự ta cũng có A(3; 5) và C(7; –1).
Vậy A(3; 5), B(1; 1) và C(7; –1).
Lời giải
Lời giải
Với A(2;–1), B(1; 4) và C(7; 0) ta có:
+) \(\overrightarrow {AB} = \left( {1 - 2;4 - \left( { - 1} \right)} \right) = \left( { - 1;5} \right)\)
\( \Rightarrow AB = \left| {\overrightarrow {AB} } \right| = \sqrt {{{\left( { - 1} \right)}^2} + {5^2}} = \sqrt {26} \)
+) \(\overrightarrow {BC} = \left( {7 - 1;0 - 4} \right) = \left( {6; - 4} \right)\)
\( \Rightarrow BC = \left| {\overrightarrow {BC} } \right| = \sqrt {{6^2} + {{\left( { - 4} \right)}^2}} = \sqrt {52} = 2\sqrt {13} \)
+) \(\overrightarrow {CA} = \left( {2 - 7; - 1 - 0} \right) = \left( { - 5; - 1} \right)\)
\( \Rightarrow CA = \left| {\overrightarrow {CA} } \right| = \sqrt {{{\left( { - 5} \right)}^2} + {{\left( { - 1} \right)}^2}} = \sqrt {26} \)
Do đó AB = CA \(\left( { = \sqrt {26} } \right)\)
Nên tam giác ABC cân tại A (1)
Mặt khác: \(B{C^2} = {\left( {2\sqrt {13} } \right)^2} = 52\)
Và \(A{B^2} + A{C^2} = {\left( {\sqrt {26} } \right)^2} + {\left( {\sqrt {26} } \right)^2} = 52\)
BC2 = AB2 + AC2
Theo định lí Pythagoras đảo thì tam giác ABC vuông tại A (2)
Từ (1) và (2) suy ra tam giác ABC vuông cân tại A với \(AB = AC = \sqrt {26} ;BC = 2\sqrt {13} .\)
Lời giải
Lời giải

Vì ABC là tam giác vuông cân
Nên để ABDC là hình vuông thì tứ giác ABDC là hình bình hành
\( \Leftrightarrow \overrightarrow {CA} = \overrightarrow {DB} \)
Gọi D(xD; yD) và có A(2;–1), B(1; 4), C(7; 0).
\( \Rightarrow \overrightarrow {CA} = \left( { - 5; - 1} \right)\)và \(\overrightarrow {DB} = \left( {1 - {x_D};4 - {y_D}} \right)\)
Do đó \(\overrightarrow {CA} = \overrightarrow {DB} \Leftrightarrow \left\{ \begin{array}{l} - 5 = 1 - {x_D}\\ - 1 = 4 - {y_D}\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}{x_D} = 6\\{y_D} = 5\end{array} \right.\) D(6; 5).
Vậy tọa độ điểm D cần tìm là D(6; 5).
Lời giải
Lời giải
Gọi P(a; 0) là điểm thuộc tia Ox.
Với M(–2; 1) và N(4; 5) ta có:
+) \(\overrightarrow {PM} = \left( { - 2 - a;1} \right)\)\[ \Rightarrow PM = \left| {\overrightarrow {PM} } \right| = \sqrt {{{\left( { - 2 - a} \right)}^2} + {1^2}} \]
+) \(\overrightarrow {PN} = \left( {4 - a;5} \right)\)\( \Rightarrow PN = \left| {\overrightarrow {PN} } \right| = \sqrt {{{\left( {4 - a} \right)}^2} + {5^2}} \)
Do đó PM = PN \[ \Leftrightarrow \sqrt {{{\left( { - 2 - a} \right)}^2} + {1^2}} = \sqrt {{{\left( {4 - a} \right)}^2} + {5^2}} \]
(–2 – a)2 + 12 = (4 – a)2 + 52
4 + 4a + a2 + 1 = 16 – 8a + a2 + 25
12a = 36
a = 3.
Vậy P(3; 0).
Lời giải
Lời giải
Giả sử điểm Q có tọa độ là Q(x; y).
Với M(–2; 1), N(4; 5) và P(3; 0) ta có:
+) \[\overrightarrow {MQ} = \left( {x + 2;y - 1} \right)\]
+) \[\overrightarrow {PN} = \left( {4 - 3;5 - 0} \right) = \left( {1;5} \right)\]
\[ \Rightarrow 2\overrightarrow {PN} = \left( {2;10} \right)\]
Do đó \[\overrightarrow {MQ} = 2\overrightarrow {PN} \Leftrightarrow \left\{ \begin{array}{l}x + 2 = 2\\y - 1 = 10\end{array} \right.\]
\[ \Leftrightarrow \left\{ \begin{array}{l}x = 0\\y = 11\end{array} \right.\] Q(0; 11).
Vậy Q(0; 11).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.