Giải SBT Toán 10 KNTT Bài 27. Thực hành tính xác suất theo định nghĩa cổ điển có đáp án
31 người thi tuần này 4.6 685 lượt thi 9 câu hỏi
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
🔥 Học sinh cũng đã học
20 câu trắc nghiệm Toán 10 Cánh diều Bài tập cuối chương 7 (Đúng sai - trả lời ngắn) có đáp án
20 câu trắc nghiệm Toán 10 Cánh diều Bài 6. Ba đường conic (Đúng sai - trả lời ngắn) có đáp án
20 câu trắc nghiệm Toán 10 Cánh diều Bài 5. Phương trình đường trò (Đúng sai - trả lời ngắn) có đáp án
20 câu trắc nghiệm Toán 10 Cánh diều Bài 4. Vị trí tương đối và góc giữa hai đường thẳng. Khoảng cách từ một điểm đến một đường thẳng (Đúng sai - trả lời ngắn) có đáp án
20 câu trắc nghiệm Toán 10 Cánh diều Bài 3. Phương trình đường thẳn (Đúng sai - trả lời ngắn) có đáp án
20 câu trắc nghiệm Toán 10 Cánh diều Bài 2. Biểu thức tọa độ của các phép toán vectơ (Đúng sai - trả lời ngắn) có đáp án
20 câu trắc nghiệm Toán 10 Cánh diều Bài 1. Tọa độ của vectơ (Đúng sai - trả lời ngắn) có đáp án
20 câu trắc nghiệm Toán 10 Cánh diều Bài ôn tập cuối chương 6 (Đúng sai - trả lời ngắn) có đáp án
Danh sách câu hỏi:
Lời giải
Theo đề bài ta có:
2x + y = 50 ⇔ y = 50 – 2x.
Sau một tiếng, trong quán có:
50 – (y – 6) + 2x – 5
= 50 – y + 6 + 2x – 5
= 51 + 2x – y (người)
Trong đó, có (2x – 5 + y) người là nữ. Vậy ta có xác suất để chọn được một khách nữ là:
⇔ 459 + 18x – 9y = 26x – 65 + 13y
⇔ 4x + 11y = 262
Mà y = 50 – 2x nên ta có:
4x + 11 . (50 – 2x) = 262
⇔ 18x = 288
⇔ x = 16
Do đó, y = 50 – 2 . 16 = 18.
Vậy x = 16, y = 18.
Lời giải
Số cách để chọn ngẫu nhiên hai em trong 40 em học sinh là: = 780 (cách).
Do đó, ta có n(Ω) = 780.
Gọi A là biến cố: “Hai em chọn được có một em nữ không thuận tay trái và một em nam thuận tay trái”
Lớp có 40 – 16 = 24 em nữ, trong đó, 24 – 2 = 22 em không thuận tay trái. Do đó, số cách chọn 1 em nữ không thuận tay trái là 22 cách.
Trong lớp có 3 em nam thuận tay trái, do đó, số cách chọn 1 em nam thuận tay trái là 3 cách.
Theo quy tắc nhân ta có: n(A) = 22 . 3 = 66.
Vậy xác suất của biến cố A là: P(A) = .
Lời giải
a)
Kí hiệu Đ, X, V tương ứng là viên bi màu đỏ, xanh, vàng.
Ta có sơ đồ hình cây mô tả các phần tử của không gian mẫu:

Do đó, ta có:
Ω = {(ĐXĐ; ĐXX; ĐVĐ; ĐVX; XXĐ; XXX; XVĐ; XVX; VXĐ; VXX; VVĐ; VVX}.
Vậy n(Ω) = 12.
Lời giải
b)
Gọi biến cố A: “Trong ba viên bi rút ra có ít nhất một viên bi đỏ”
Biến cố đối của A là : “Trong ba viên bi rút ra không có viên bi màu đỏ”.
Ta có: = {XXX; XVX; VXX; VVX}; n( ) = 4.
Do đó, ta có: P() =
Vậy P(A) =
Lời giải
Gọi a là số trên thẻ rút được từ hộp I, a ∈ {1; 2; 3}.
Gọi b là số trên thẻ rút được từ hộp II, b ∈ {2; 4; 6; 8}.
Gọi c là số trên thẻ rút được từ hộp III, c ∈ {1; 3; 5; 7; 9; 11}.
Ta có không gian mẫu: Ω = {(a, b, c) | a ∈ {1; 2; 3}, b ∈ {2; 4; 6; 8}, c ∈ {1; 3; 5; 7; 9; 11}}.
Theo quy tắc nhân, ta có: n(Ω) = 3 . 4 . 6 = 72.
Xét biến cố A: “Tổng ba số trên ba tấm thẻ là số lẻ”.
Do b luôn là một số chẵn và c luôn là một số lẻ nên tổng b + c luôn là một số lẻ, do đó để (a + b + c) là một số lẻ thì a phải là số chẵn. Do đó, a = 2.
Khi đó, A = {(2, b, c) | b ∈ {2; 4; 6; 8}, c ∈ {1; 3; 5; 7; 9; 11}}.
Do đó, n(A) = 1 . 4 . 6 = 24.
Vậy P(A) =
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.