Bài tập Cuối chương 6 có đáp án
36 người thi tuần này 4.6 1 K lượt thi 11 câu hỏi
🔥 Đề thi HOT:
12 Bài tập Ứng dụng của hàm số bậc hai để giải bài toán thực tế (có lời giải)
10 Bài tập Ứng dụng ba đường conic vào các bài toán thực tế (có lời giải)
13 câu Trắc nghiệm Tích của vectơ với một số có đáp án (Thông hiểu)
16 câu Trắc nghiệm Toán 10 Kết nối tri thức Mệnh đề có đáp án
Bộ 2 Đề kiểm tra giữa học kì 2 Toán 10 Kết nối tri thức có đáp án - Đề 1
Bộ 5 đề thi cuối kì 2 Toán 10 Kết nối tri thức cấu trúc mới có đáp án - Đề 1
185 câu Trắc nghiệm Toán 10 Bài 1:Phương trình đường thẳng trong mặt phẳng oxy có đáp án (Mới nhất)
10 Bài tập Tính số trung bình, trung vị, tứ phân vị và mốt của mẫu số liệu cho trước (có lời giải)
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
Hướng dẫn giải
Đáp án đúng là: B
Biểu thức \(\frac{1}{{\sqrt {x - 2} }}\) có nghĩa khi x – 2 > 0 ⇔ x > 2.
Vậy tập xác định của hàm số đã cho là D = (2; + ∞).Lời giải
Hướng dẫn giải
Đáp án đúng là: D
Ta có các hệ số: a = – 1; b = 2, c = 3.
\(\frac{{ - b}}{{2a}} = \frac{{ - 2}}{{2.\left( { - 1} \right)}} = 1\)
y(1) = – 12 + 2 . 1 + 3 = 4.
Vậy tọa độ đỉnh của parabol là I(1; 4).
Lời giải
Hướng dẫn giải
Đáp án đúng là: C
Các hệ số a = 1 > 0, b = – 5, c = 4.
Ta có: \[\frac{{ - b}}{{2a}} = \frac{{ - \left( { - 5} \right)}}{{2.1}} = \frac{5}{2}\]
Do đó hàm số đã cho nghịch biến trên khoảng \(\left( { - \infty ;\frac{5}{2}} \right)\) và đồng biến trên khoảng \(\left( {\frac{5}{2}; + \infty } \right)\).
Mà (– ∞; 1) \( \subset \left( { - \infty ;\frac{5}{2}} \right)\) nên hàm số đã cho nghịch biến trên khoảng (– ∞; 1).
Lời giải
Hướng dẫn giải
Đáp án đúng là: A
Xét tam thức bậc hai f(x) = x2 – 2mx + 4 có hệ số a = 1 > 0, ∆' = (– m)2 – 1 . 4 = m2 – 4.
Để f(x) > 0 (cùng dấu với hệ số a) với mọi \(x \in \mathbb{R}\) thì ∆' < 0 hay m2 – 4 < 0.
⇔ m2 < 4 ⇔ – 2 < m < 2.
Trong các đáp án đã cho, ta thấy đáp án A. m = – 1 là thỏa mãn.
Lời giải
Hướng dẫn giải
Đáp án đúng là: C
Bình phương hai vế của phương trình \(\sqrt {2{x^2} - 3} = x - 1\) ta được:
2x2 – 3 = x2 – 2x + 1
⇔ x2 + 2x – 4 = 0
⇔ x = \( - 1 - \sqrt 5 \) hoặc \(x = - 1 + \sqrt 5 \).
Lần lượt thay các giá trị trên vào phương trình đã cho, ta thấy x = \( - 1 + \sqrt 5 \) thỏa mãn.
Vậy tập nghiệm của phương trình đã cho là S = \(\left\{ { - 1 + \sqrt 5 } \right\}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
192 Đánh giá
50%
40%
0%
0%
0%