Câu hỏi:
13/07/2024 9,226
Với mỗi hàm số dưới đây, hãy vẽ đồ thị, tìm tập giá trị, khoảng đồng biến, khoảng nghịch biến của nó:
a) y = – x2 + 6x – 9;
b) y = – x2 – 4x + 1;
c) y = x2 + 4x;
d) y = 2x2 + 2x + 1.
Câu hỏi trong đề: Bài tập Cuối chương 6 có đáp án !!
Quảng cáo
Trả lời:
a) y = – x2 + 6x – 9 là hàm số bậc hai nên đồ thị là một parabol.
Hệ số a = – 1 < 0 nên bề lõm của đồ thị quay xuống dưới.
Parabol trên có:
+ Tọa độ đỉnh I(3; 0);
+ Trục đối xứng x = 3;
+ Cắt trục Oy tại điểm A(0; – 9);
+ Điểm đối xứng với A qua trục đối xứng x = 3 là B(6; – 9);
+ Lấy điểm D(1; – 4) thuộc parabol, điểm đối xứng với D là trục đối xứng x = 3 là E(5; – 4).
Vẽ đường cong đi qua các điểm trên ta được đồ thị hàm số cần vẽ.
Quan sát đồ thị ta thấy:
+ Tập giá trị của hàm số là (– ∞; 0].
+ Hàm số đồng biến trên khoảng (– ∞; 3) (do đồ thị hàm số đi lên từ trái sang phải) và nghịch biến trên khoảng (3; + ∞) (do đồ thị hàm số đi xuống từ trái sang phải).
b) y = – x2 – 4x + 1 là hàm số bậc hai nên đồ thị là một parabol.
Hệ số a = – 1 < 0 nên bề lõm của đồ thị quay xuống dưới.
Parabol trên có:
+ Tọa độ đỉnh I(– 2; 5);
+ Trục đối xứng x = – 2;
+ Cắt trục Oy tại điểm A(0; 1);
+ Điểm đối xứng với A qua trục đối xứng x = – 2 là B(– 4; 1);
+ Lấy điểm C(– 1; 4) thuộc đồ thị, điểm đối xứng với C qua trục đối xứng x = – 2 là D(– 3; 4).
Vẽ đường cong đi qua các điểm trên ta được đồ thị hàm số cần vẽ.
Quan sát đồ thị hàm số ta thấy:
+ Tập giá trị của hàm số là (– ∞; 5].
+ Hàm số đồng biến trên khoảng (– ∞; – 2) và nghịch biến trên khoảng (– 2; + ∞).
c) y = x2 + 4x là hàm số bậc hai nên đồ thị là một parabol.
Hệ số a = 1 > 0 nên bề lõm của đồ thị quay lên trên.
Parabol trên có:
+ Tọa độ đỉnh I(– 2; – 4);
+ Trục đối xứng x = – 2;
+ Cắt trục Oy tại điểm gốc tọa độ O(0; 0);
+ Điểm đối xứng với O qua trục đối xứng x = – 2 là điểm B(– 4; 0);
+ Lấy điểm C(– 1; – 3) thuộc đồ thị, điểm đối xứng với C qua trục đối xứng x = – 2 là D(– 3; – 3).
Vẽ đường cong đi qua các điểm trên ta được đồ thị cần vẽ.
Quan sát đồ thị hàm số ta thấy:
+ Tập giá trị của hàm số là [– 4; + ∞).
+ Hàm số nghịch biến trên khoảng (– ∞; – 2) và đồng biến trên khoảng (– 2; + ∞).
d) y = 2x2 + 2x + 1 là hàm số bậc hai nên đồ thị là một parabol.
Hệ số a = 2 > 0 nên bề lõm của đồ thị quay lên trên.
Parabol trên có:
+ Tọa độ đỉnh I\(\left( { - \frac{1}{2};\,\frac{1}{2}} \right)\);
+ Trục đối xứng x = \( - \frac{1}{2}\);
+ Cắt trục Oy tại điểm A(0; 1).
+ Điểm đối xứng với A qua trục đối xứng x = \( - \frac{1}{2}\) là B(– 1; 1);
+ Lấy điểm C(1; 5) thuộc đồ thị, điểm đối xứng với C qua trục đối xứng x = \( - \frac{1}{2}\) là D(– 2; 5).
Vẽ đường cong đi qua các điểm đã cho ta được đồ thị cần vẽ.
Quan sát đồ thị ta thấy:
+ Tập giá trị của hàm số là \(\left[ {\frac{1}{2}; + \infty } \right)\).
+ Hàm số nghịch biến trên khoảng \(\left( { - \infty ; - \frac{1}{2}} \right)\) và đồng biến trên khoảng \(\left( { - \frac{1}{2}; + \infty } \right)\).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Đáp án đúng là: A
Xét tam thức bậc hai f(x) = x2 – 2mx + 4 có hệ số a = 1 > 0, ∆' = (– m)2 – 1 . 4 = m2 – 4.
Để f(x) > 0 (cùng dấu với hệ số a) với mọi \(x \in \mathbb{R}\) thì ∆' < 0 hay m2 – 4 < 0.
⇔ m2 < 4 ⇔ – 2 < m < 2.
Trong các đáp án đã cho, ta thấy đáp án A. m = – 1 là thỏa mãn.
Lời giải
Hướng dẫn giải
Điều kiện: a ≠ 0.
a) (P) đi qua điểm A(1; 1) nên tọa độ điểm A thỏa mãn hàm số y = ax2 + bx + 3, do đó ta có: 1 = a . 12 + b . 1 + 3 ⇔ a + b = – 2 ⇔ a = – 2 – b (1a).
(P) đi qua điểm B(– 1; 0) nên tọa độ điểm B thỏa mãn hàm số y = ax2 + bx + 3, do đó ta có: 0 = a . (– 1)2 + b . (– 1) + 3 ⇔ a – b = – 3 ⇔ a = – 3 + b (2a).
Từ (1a) và (2a) suy ra: – 2 – b = – 3 + b ⇔ 2b = 1 ⇔ b = \(\frac{1}{2}\).
Suy ra: a = – 2 – \(\frac{1}{2}\) = \( - \frac{5}{2}\).
Vậy phương trình parabol (P): \(y = - \frac{5}{2}{x^2} + \frac{1}{2}x + 3\).
b) (P) đi qua điểm M(1; 2) nên tọa độ điểm M thỏa mãn hàm số y = ax2 + bx + 3, do đó ta có: 2 = a . 12 + b . 1 + 3 ⇔ a + b = – 1 ⇔ a = – 1 – b (1b).
(P) nhận đường thẳng x = 1 làm trục đối xứng nên \(\frac{{ - b}}{{2a}} = 1 \Leftrightarrow 2a = - b \Leftrightarrow a = - \frac{1}{2}b\) (2b).
Từ (1b) và (2b) suy ra: \( - 1 - b = - \frac{1}{2}b \Leftrightarrow \frac{1}{2}b = - 1 \Leftrightarrow b = - 2\).
Suy ra a = – 1 – (– 2) = 1.
Vậy phương trình parabol (P): y = x2 – 2x + 3.
c) (P) có đỉnh là I(1; 4) hay (P) đi qua điểm I(1; 4) nên tọa độ điểm I thỏa mãn hàm số y = ax2 + bx + 3, do đó ta có: 4 = a . 12 + b . 1 + 3 ⇔ a + b = 1 ⇔ a = 1 – b (1c).
Vì I là đỉnh của (P) nên \(\frac{{ - b}}{{2a}} = 1 \Leftrightarrow 2a = - b \Leftrightarrow a = - \frac{1}{2}b\) (2c).
Từ (1c) và (2c) suy ra: 1 – b = \( - \frac{1}{2}b\)\( \Leftrightarrow \frac{1}{2}b = 1 \Leftrightarrow b = 2\).
Suy ra a = 1 – b = 1 – 2 = – 1.
Vậy phương trình parabol (P): y = – x2 + 2x + 3.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.