Câu hỏi:
13/07/2024 6,282a) y = – x2 + 6x – 9;
b) y = – x2 – 4x + 1;
c) y = x2 + 4x;
d) y = 2x2 + 2x + 1.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
a) y = – x2 + 6x – 9 là hàm số bậc hai nên đồ thị là một parabol.
Hệ số a = – 1 < 0 nên bề lõm của đồ thị quay xuống dưới.
Parabol trên có:
+ Tọa độ đỉnh I(3; 0);
+ Trục đối xứng x = 3;
+ Cắt trục Oy tại điểm A(0; – 9);
+ Điểm đối xứng với A qua trục đối xứng x = 3 là B(6; – 9);
+ Lấy điểm D(1; – 4) thuộc parabol, điểm đối xứng với D là trục đối xứng x = 3 là E(5; – 4).
Vẽ đường cong đi qua các điểm trên ta được đồ thị hàm số cần vẽ.
Quan sát đồ thị ta thấy:
+ Tập giá trị của hàm số là (– ∞; 0].
+ Hàm số đồng biến trên khoảng (– ∞; 3) (do đồ thị hàm số đi lên từ trái sang phải) và nghịch biến trên khoảng (3; + ∞) (do đồ thị hàm số đi xuống từ trái sang phải).
b) y = – x2 – 4x + 1 là hàm số bậc hai nên đồ thị là một parabol.
Hệ số a = – 1 < 0 nên bề lõm của đồ thị quay xuống dưới.
Parabol trên có:
+ Tọa độ đỉnh I(– 2; 5);
+ Trục đối xứng x = – 2;
+ Cắt trục Oy tại điểm A(0; 1);
+ Điểm đối xứng với A qua trục đối xứng x = – 2 là B(– 4; 1);
+ Lấy điểm C(– 1; 4) thuộc đồ thị, điểm đối xứng với C qua trục đối xứng x = – 2 là D(– 3; 4).
Vẽ đường cong đi qua các điểm trên ta được đồ thị hàm số cần vẽ.
Quan sát đồ thị hàm số ta thấy:
+ Tập giá trị của hàm số là (– ∞; 5].
+ Hàm số đồng biến trên khoảng (– ∞; – 2) và nghịch biến trên khoảng (– 2; + ∞).
c) y = x2 + 4x là hàm số bậc hai nên đồ thị là một parabol.
Hệ số a = 1 > 0 nên bề lõm của đồ thị quay lên trên.
Parabol trên có:
+ Tọa độ đỉnh I(– 2; – 4);
+ Trục đối xứng x = – 2;
+ Cắt trục Oy tại điểm gốc tọa độ O(0; 0);
+ Điểm đối xứng với O qua trục đối xứng x = – 2 là điểm B(– 4; 0);
+ Lấy điểm C(– 1; – 3) thuộc đồ thị, điểm đối xứng với C qua trục đối xứng x = – 2 là D(– 3; – 3).
Vẽ đường cong đi qua các điểm trên ta được đồ thị cần vẽ.
Quan sát đồ thị hàm số ta thấy:
+ Tập giá trị của hàm số là [– 4; + ∞).
+ Hàm số nghịch biến trên khoảng (– ∞; – 2) và đồng biến trên khoảng (– 2; + ∞).
d) y = 2x2 + 2x + 1 là hàm số bậc hai nên đồ thị là một parabol.
Hệ số a = 2 > 0 nên bề lõm của đồ thị quay lên trên.
Parabol trên có:
+ Tọa độ đỉnh I\(\left( { - \frac{1}{2};\,\frac{1}{2}} \right)\);
+ Trục đối xứng x = \( - \frac{1}{2}\);
+ Cắt trục Oy tại điểm A(0; 1).
+ Điểm đối xứng với A qua trục đối xứng x = \( - \frac{1}{2}\) là B(– 1; 1);
+ Lấy điểm C(1; 5) thuộc đồ thị, điểm đối xứng với C qua trục đối xứng x = \( - \frac{1}{2}\) là D(– 2; 5).
Vẽ đường cong đi qua các điểm đã cho ta được đồ thị cần vẽ.
Quan sát đồ thị ta thấy:
+ Tập giá trị của hàm số là \(\left[ {\frac{1}{2}; + \infty } \right)\).
+ Hàm số nghịch biến trên khoảng \(\left( { - \infty ; - \frac{1}{2}} \right)\) và đồng biến trên khoảng \(\left( { - \frac{1}{2}; + \infty } \right)\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 3:
Xác định parabol (P): y = ax2 + bx + 3 trong mỗi trường hợp sau:
a) (P) đi qua hai điểm A(1; 1) và B(– 1; 0);
b) (P) đi qua điểm M(1; 2) và nhận đường thẳng x = 1 làm trục đối xứng;
c) (P) có đỉnh là I(1; 4).
Câu 5:
Giải các bất phương trình sau:
a) 2x2 – 3x + 1 > 0;
b) x2 + 5x + 4 < 0;
c) – 3x2 + 12x – 12 ≥ 0;
d) 2x2 + 2x + 1 < 0.
75 câu trắc nghiệm Vectơ nâng cao (P1)
13 câu Trắc nghiệm Tích của vectơ với một số có đáp án (Thông hiểu)
28 câu Trắc nghiệm Mệnh đề có đáp án
10 Bài tập Tính số trung bình, trung vị, tứ phân vị và mốt của mẫu số liệu cho trước (có lời giải)
80 câu trắc nghiệm Vectơ cơ bản (P1)
5 câu Trắc nghiệm Phương sai và độ lệch chuẩn có đáp án (Thông hiểu)
12 Bài tập Ứng dụng của hàm số bậc hai để giải bài toán thực tế (có lời giải)
50 câu trắc nghiệm Thống kê nâng cao (P1)
về câu hỏi!