Câu hỏi:

13/07/2024 6,282

Với mỗi hàm số dưới đây, hãy vẽ đồ thị, tìm tập giá trị, khoảng đồng biến, khoảng nghịch biến của nó:

a) y = – x2 + 6x – 9;

b) y = – x2 – 4x + 1;

c) y = x2 + 4x;

d) y = 2x2 + 2x + 1.

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn sử Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Hướng dẫn giải

a) y = – x2 + 6x – 9 là hàm số bậc hai nên đồ thị là một parabol.

Hệ số a = – 1 < 0 nên bề lõm của đồ thị quay xuống dưới.

Parabol trên có:

+ Tọa độ đỉnh I(3; 0);

+ Trục đối xứng x = 3;

+ Cắt trục Oy tại điểm A(0; – 9);

+ Điểm đối xứng với A qua trục đối xứng x = 3 là B(6; – 9);

+ Lấy điểm D(1; – 4) thuộc parabol, điểm đối xứng với D là trục đối xứng x = 3 là E(5; – 4).

Vẽ đường cong đi qua các điểm trên ta được đồ thị hàm số cần vẽ.

Media VietJack

Quan sát đồ thị ta thấy:

+ Tập giá trị của hàm số là (– ; 0].

+ Hàm số đồng biến trên khoảng (– ; 3) (do đồ thị hàm số đi lên từ trái sang phải) và nghịch biến trên khoảng (3; + ) (do đồ thị hàm số đi xuống từ trái sang phải).

b) y = – x2 – 4x + 1 là hàm số bậc hai nên đồ thị là một parabol.

Hệ số a = – 1 < 0 nên bề lõm của đồ thị quay xuống dưới.

Parabol trên có:

+ Tọa độ đỉnh I(– 2; 5);

+ Trục đối xứng x = – 2;

+ Cắt trục Oy tại điểm A(0; 1);

+ Điểm đối xứng với A qua trục đối xứng x = – 2 là B(– 4; 1);

+ Lấy điểm C(– 1; 4) thuộc đồ thị, điểm đối xứng với C qua trục đối xứng x = – 2 là D(– 3; 4).

Vẽ đường cong đi qua các điểm trên ta được đồ thị hàm số cần vẽ.

Media VietJack

Quan sát đồ thị hàm số ta thấy:

+ Tập giá trị của hàm số là (– ; 5].

+ Hàm số đồng biến trên khoảng (– ; – 2) và nghịch biến trên khoảng (– 2; + ).  

c) y = x2 + 4x là hàm số bậc hai nên đồ thị là một parabol.

Hệ số a = 1 > 0 nên bề lõm của đồ thị quay lên trên.

Parabol trên có:

+ Tọa độ đỉnh I(– 2; – 4);

+ Trục đối xứng x = – 2;

+ Cắt trục Oy tại điểm gốc tọa độ O(0; 0);

+ Điểm đối xứng với O qua trục đối xứng x = – 2 là điểm B(– 4; 0);

+ Lấy điểm C(– 1; – 3) thuộc đồ thị, điểm đối xứng với C qua trục đối xứng x = – 2 là D(– 3; – 3).

Vẽ đường cong đi qua các điểm trên ta được đồ thị cần vẽ.

Media VietJack

Quan sát đồ thị hàm số ta thấy:

+ Tập giá trị của hàm số là [– 4; + ).

+ Hàm số nghịch biến trên khoảng (– ; – 2) và đồng biến trên khoảng (– 2; + ).

d) y = 2x2 + 2x + 1 là hàm số bậc hai nên đồ thị là một parabol.

Hệ số a = 2 > 0 nên bề lõm của đồ thị quay lên trên.

Parabol trên có:

+ Tọa độ đỉnh I\(\left( { - \frac{1}{2};\,\frac{1}{2}} \right)\);

+ Trục đối xứng x = \( - \frac{1}{2}\);

+ Cắt trục Oy tại điểm A(0; 1).

+ Điểm đối xứng với A qua trục đối xứng x = \( - \frac{1}{2}\) là B(– 1; 1);

+ Lấy điểm C(1; 5) thuộc đồ thị, điểm đối xứng với C qua trục đối xứng x = \( - \frac{1}{2}\) là D(– 2; 5).

Vẽ đường cong đi qua các điểm đã cho ta được đồ thị cần vẽ.

Media VietJack

Quan sát đồ thị ta thấy:

+ Tập giá trị của hàm số là \(\left[ {\frac{1}{2}; + \infty } \right)\).

+ Hàm số nghịch biến trên khoảng \(\left( { - \infty ; - \frac{1}{2}} \right)\) và đồng biến trên khoảng \(\left( { - \frac{1}{2}; + \infty } \right)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Bất phương trình x2 – 2mx + 4 > 0 nghiệm đúng với mọi \(x \in \mathbb{R}\) khi

Xem đáp án » 25/06/2022 13,792

Câu 2:

Tập nghiệm của phương trình \(\sqrt {2{x^2} - 3} = x - 1\) là

Xem đáp án » 25/06/2022 11,403

Câu 3:

Xác định parabol (P): y = ax2 + bx + 3 trong mỗi trường hợp sau:

a) (P) đi qua hai điểm A(1; 1) và B(– 1; 0);

b) (P) đi qua điểm M(1; 2) và nhận đường thẳng x = 1 làm trục đối xứng;

c) (P) có đỉnh là I(1; 4).

Xem đáp án » 13/07/2024 10,850

Câu 4:

Hàm số y = x2 – 5x + 4

Xem đáp án » 25/06/2022 6,526

Câu 5:

Giải các bất phương trình sau:

a) 2x2 – 3x + 1 > 0;

b) x2 + 5x + 4 < 0;

c) – 3x2 + 12x – 12 ≥ 0;

d) 2x2 + 2x + 1 < 0.

Xem đáp án » 13/07/2024 6,077

Câu 6:

Parabol y = – x2 + 2x + 3 có đỉnh là

Xem đáp án » 25/06/2022 5,341

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store