Câu hỏi:
13/07/2024 12,464Xác định parabol (P): y = ax2 + bx + 3 trong mỗi trường hợp sau:
a) (P) đi qua hai điểm A(1; 1) và B(– 1; 0);
b) (P) đi qua điểm M(1; 2) và nhận đường thẳng x = 1 làm trục đối xứng;
c) (P) có đỉnh là I(1; 4).
Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).
Sách đề toán-lý-hóa Sách văn-sử-địa Tiếng anh & các môn khác
Quảng cáo
Trả lời:
Hướng dẫn giải
Điều kiện: a ≠ 0.
a) (P) đi qua điểm A(1; 1) nên tọa độ điểm A thỏa mãn hàm số y = ax2 + bx + 3, do đó ta có: 1 = a . 12 + b . 1 + 3 ⇔ a + b = – 2 ⇔ a = – 2 – b (1a).
(P) đi qua điểm B(– 1; 0) nên tọa độ điểm B thỏa mãn hàm số y = ax2 + bx + 3, do đó ta có: 0 = a . (– 1)2 + b . (– 1) + 3 ⇔ a – b = – 3 ⇔ a = – 3 + b (2a).
Từ (1a) và (2a) suy ra: – 2 – b = – 3 + b ⇔ 2b = 1 ⇔ b = \(\frac{1}{2}\).
Suy ra: a = – 2 – \(\frac{1}{2}\) = \( - \frac{5}{2}\).
Vậy phương trình parabol (P): \(y = - \frac{5}{2}{x^2} + \frac{1}{2}x + 3\).
b) (P) đi qua điểm M(1; 2) nên tọa độ điểm M thỏa mãn hàm số y = ax2 + bx + 3, do đó ta có: 2 = a . 12 + b . 1 + 3 ⇔ a + b = – 1 ⇔ a = – 1 – b (1b).
(P) nhận đường thẳng x = 1 làm trục đối xứng nên \(\frac{{ - b}}{{2a}} = 1 \Leftrightarrow 2a = - b \Leftrightarrow a = - \frac{1}{2}b\) (2b).
Từ (1b) và (2b) suy ra: \( - 1 - b = - \frac{1}{2}b \Leftrightarrow \frac{1}{2}b = - 1 \Leftrightarrow b = - 2\).
Suy ra a = – 1 – (– 2) = 1.
Vậy phương trình parabol (P): y = x2 – 2x + 3.
c) (P) có đỉnh là I(1; 4) hay (P) đi qua điểm I(1; 4) nên tọa độ điểm I thỏa mãn hàm số y = ax2 + bx + 3, do đó ta có: 4 = a . 12 + b . 1 + 3 ⇔ a + b = 1 ⇔ a = 1 – b (1c).
Vì I là đỉnh của (P) nên \(\frac{{ - b}}{{2a}} = 1 \Leftrightarrow 2a = - b \Leftrightarrow a = - \frac{1}{2}b\) (2c).
Từ (1c) và (2c) suy ra: 1 – b = \( - \frac{1}{2}b\)\( \Leftrightarrow \frac{1}{2}b = 1 \Leftrightarrow b = 2\).
Suy ra a = 1 – b = 1 – 2 = – 1.
Vậy phương trình parabol (P): y = – x2 + 2x + 3.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 4:
a) y = – x2 + 6x – 9;
b) y = – x2 – 4x + 1;
c) y = x2 + 4x;
d) y = 2x2 + 2x + 1.
Câu 5:
Giải các bất phương trình sau:
a) 2x2 – 3x + 1 > 0;
b) x2 + 5x + 4 < 0;
c) – 3x2 + 12x – 12 ≥ 0;
d) 2x2 + 2x + 1 < 0.
13 câu Trắc nghiệm Tích của vectơ với một số có đáp án (Thông hiểu)
16 câu Trắc nghiệm Toán 10 Kết nối tri thức Mệnh đề có đáp án
12 Bài tập Ứng dụng của hàm số bậc hai để giải bài toán thực tế (có lời giải)
75 câu trắc nghiệm Vectơ nâng cao (P1)
Bài tập Xác định tính hợp lí của dữ liệu trong bảng thống kê (có lời giải)
15 câu Trắc nghiệm Toán 10 Kết nối tri thức Số gần đúng và sai số có đáp án
Đề thi Giữa kì 1 Toán 10 Kết nối tri thức có đáp án - Đề 1
15 câu Trắc nghiệm Toán 10 Kết nối tri thức Hàm số có đáp án
về câu hỏi!