Giải SBT Toán 10 Ôn tập chương 8 có đáp án

41 người thi tuần này 4.6 584 lượt thi 23 câu hỏi

Nội dung liên quan:

Danh sách câu hỏi:

Lời giải

Hướng dẫn giải

Đáp án đúng là: D

Từ Hà Nội tới Hải Phòng, một hành khách có 5 cách chọn nhà xe.

Để quay lại Hà Nội bằng một nhà xe khác thì hành khách có 5 – 1= 4 cách chọn.

Như vậy, theo quy tắc nhân thì số cách đi là 5 . 4 = 20 (cách).

Lời giải

Hướng dẫn giải

Đáp án đúng là: A

Một số có ba chữ số như vậy có dạng \(\overline {abc} \), với a, b, c khác nhau, được chọn từ các chữ số 1; 2; 3; 4; 5; 6; 7; 8; 9 và c chỉ nhận một trong các giá trị 2; 4; 6; 8. Ta có thể xây dựng một số như vậy bằng cách trước hết chọn c, sau đó chọn ra hai chữ số có sắp thứ tự a, b từ các chữ số còn lại.

Có 4 cách chọn c là một trong các chữ số 2; 4; 6; 8.

Có 8 cách chọn a (bớt đi 1 số đã chọn bởi c).

Có 7 cách chọn b (bớt đi 1 số đã chọn bởi c, 1 số đã chọn bởi a).

Vì thế, theo quy tắc nhân, số các số có tính chất của bài toán là:

4 . 8 . 7 = 224 (số).

Lời giải

Hướng dẫn giải

Đáp án đúng là: B

Một số tự nhiên nằm trong khoảng từ 3 000 đến 4 000 và chia hết cho 5 và có các chữ số được tạo thành từ các chữ số 1; 2; 3; 4; 5; 6 phải có chữ số hàng đơn vị là 5 và chữ số hàng nghìn là 3. Như vậy các số thoả mãn yêu cầu của bài toán có dạng \(\overline {3ab5} \), trong đó a, b là 2 chữ số khác nhau chọn trong các chữ số 1; 2; 4; 6 (có sắp xếp). Do đó, số số tự nhiên thỏa mãn yêu cầu đề bài là số các chỉnh hợp chập 2 của 4 và là: \(A_4^2\).

Lời giải

Hướng dẫn giải

Đáp án đúng là: C

Mỗi tam giác cần đếm có 3 đỉnh là các điểm được đánh dấu.

Đảo lại, mỗi bộ ba điểm được đánh dấu xác định một tam giác.

Như vậy, do khi đảo cách thứ tự 3 đỉnh đã chọn cho nhau thì tam giác tạo thành không thay đổi nên số các tam giác với các điểm được đánh dấu là số các tổ hợp chập 3 của n và là: \(C_n^3\).

Mỗi tứ giác cần đếm có 4 đỉnh là các điểm được đánh dấu.

Đảo lại, mỗi bộ bốn điểm được đánh dấu xác định một tứ giác.

Như vậy, do khi đảo cách thứ tự 4 đỉnh đã chọn cho nhau thì tứ giác tạo thành không thay đổi nên số các tứ giác với các điểm được đánh dấu là số các tổ hợp chập 4 của n và là: \(C_n^4\).

Biết rằng số các hình tam giác với các đỉnh là các điểm được đánh dấu thì bằng số các tứ giác với các đỉnh là các điểm được đánh dấu. Suy ra \(C_n^3 = C_n^4\), nghĩa là

\(\frac{{n!}}{{3!(n - 3)!}} = \frac{{n!}}{{4!(n - 4)!}}\)

\( \Leftrightarrow \frac{{n\left( {n - 1} \right)\left( {n - 2} \right)(n - 3)!}}{{3.2.1.(n - 3)!}} = \frac{{n\left( {n - 1} \right)\left( {n - 2} \right)\left( {n - 3} \right)(n - 4)!}}{{4.3.2.1.(n - 4)!}}\)

\( \Leftrightarrow \frac{{n\left( {n - 1} \right)\left( {n - 2} \right)}}{{3.2.1}} = \frac{{n\left( {n - 1} \right)\left( {n - 2} \right)\left( {n - 3} \right)}}{{4.3.2.1}}\)

\( \Leftrightarrow \frac{{n\left( {n - 1} \right)\left( {n - 2} \right)}}{{3.2.1}} - \frac{{n\left( {n - 1} \right)\left( {n - 2} \right)\left( {n - 3} \right)}}{{4.3.2.1}} = 0\)

\( \Leftrightarrow n\left( {n - 1} \right)\left( {n - 2} \right)\left( {\frac{1}{6} - \frac{{n - 3}}{{24}}} \right) = 0\)

\( \Leftrightarrow n\left( {n - 1} \right)\left( {n - 2} \right)\left( {\frac{{4 - n + 3}}{{24}}} \right) = 0\)

\( \Leftrightarrow n\left( {n - 1} \right)\left( {n - 2} \right)\left( {\frac{{7 - n}}{{24}}} \right) = 0\)

\( \Leftrightarrow \left[ \begin{array}{l}n = 0\\n = 1\\n = 2\\n = 7\end{array} \right.\)

Mà n ≥ 4 nên chọn n = 7.

Lời giải

Hướng dẫn giải

Đáp án đúng là: C

Mỗi thành viên của hội đồng có 3 cách bầu khác nhau.

Số thành viên của hội đồng là 5.

Như vậy, theo quy tắc nhân thì số cách bầu là: 3 . 3 . 3 . 3 . 3 = 35.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

4.6

117 Đánh giá

50%

40%

0%

0%

0%