Giải SBT Toán 10 Bài 8. Tổng và hiệu của hai vectơ có đáp án
41 người thi tuần này 4.6 1 K lượt thi 10 câu hỏi
🔥 Đề thi HOT:
13 câu Trắc nghiệm Tích của vectơ với một số có đáp án (Thông hiểu)
Đề kiểm tra Tích của một vecto với một số (có lời giải) - Đề 1
Đề kiểm tra Tổng và hiệu của hai vectơ (có lời giải) - Đề 1
Đề kiểm tra Tích vô hướng của hai vectơ (có lời giải) - Đề 1
16 câu Trắc nghiệm Toán 10 Kết nối tri thức Mệnh đề có đáp án
Đề kiểm tra Bài tập cuối chương IV (có lời giải) - Đề 1
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
Lời giải
Giả sử ba điểm A, B, C thoả mãn: \(\overrightarrow a = \overrightarrow {AB} ,\overrightarrow b = \overrightarrow {BC} \)

Khi đó ta có: \(\overrightarrow a + \overrightarrow b = \overrightarrow {AB} + \overrightarrow {BC} = \overrightarrow {AC} \) (quy tắc ba điểm)
Do đó:
+) \(\left| {\overrightarrow a } \right| = \left| {\overrightarrow {AB} } \right| = AB;\)
+) \(\left| {\overrightarrow b } \right| = \left| {\overrightarrow {BC} } \right| = BC;\)
+) \(\left| {\overrightarrow a + \overrightarrow b } \right| = \left| {\overrightarrow {AC} } \right| = AC\)
Mặt khác: xét tam giác ABC, theo bất đẳng thức trong tam giác ta có:
AB – BC < AC < AB + BC
Hay \[\left| {\overrightarrow a } \right| - \left| {\overrightarrow b } \right| < \left| {\overrightarrow a + \overrightarrow b } \right| < \left| {\overrightarrow a } \right| + \left| {\overrightarrow b } \right|\] \(\)
Vậy \(\left| {\overrightarrow a } \right| - \left| {\overrightarrow b } \right| < \left| {\overrightarrow a + \overrightarrow b } \right| < \left| {\overrightarrow a } \right| + \left| {\overrightarrow b } \right|.\)
Lời giải
Lời giải

Vì
ABCD là hình bình hành tâm O
Nên O là trung điểm của AC và BD và \(\widehat {ADO} = \widehat {CBO}\)
Xét ∆ODN và ∆OBM có:
OD = OB (do O là trung điểm của BD),
\(\widehat {DON} = \widehat {BOM}\) (hai góc đối đỉnh),
\(\widehat {NDO} = \widehat {MBO}\)(do \(\widehat {ADO} = \widehat {CBO}\))
∆ODN = ∆OBM (g.c.g)
ON = OM (hai cạnh tương ứng)
O là trung điểm của NM.
Vậy O là trung điểm của NM.
Lời giải
Lời giải

Vì
G là trọng tâm ∆BCD nên \(\overrightarrow {GB} + \overrightarrow {GC} + \overrightarrow {GD} = \overrightarrow 0 \)
\( \Rightarrow \left( {\overrightarrow {GM} + \overrightarrow {MB} } \right) + \overrightarrow {GC} + \left( {\overrightarrow {GN} + \overrightarrow {ND} } \right) = \overrightarrow 0 \) (quy tắc hiệu)
\( \Rightarrow \overrightarrow {GM} + \overrightarrow {MB} + \overrightarrow {GC} + \overrightarrow {GN} + \overrightarrow {ND} = \overrightarrow 0 \)
\[ \Rightarrow \overrightarrow {GM} + \overrightarrow {GC} + \overrightarrow {GN} + \left( {\overrightarrow {MB} + \overrightarrow {ND} } \right) = \overrightarrow 0 \] (*)
Ta có: O là trung điểm của NM (câu a), O là trung điểm của BD (câu a)
BMDN là hình bình hành
\( \Rightarrow \overrightarrow {BM} = \overrightarrow {ND} \) \( \Rightarrow - \overrightarrow {MB} = \overrightarrow {ND} \)
\( \Rightarrow \overrightarrow {MB} + \overrightarrow {ND} = \overrightarrow 0 \)
Thay vào (*) ta được \[\overrightarrow {GM} + \overrightarrow {GC} + \overrightarrow {GN} + \overrightarrow 0 = \overrightarrow 0 \]
Do đó \[\overrightarrow {GM} + \overrightarrow {GC} + \overrightarrow {GN} = \overrightarrow 0 \]
G là trọng tâm tam giác MNC.
Vậy G là trọng tâm tam giác MNC.
Lời giải
Lời giải
a) Theo quy tắc ba điểm ta có:
\[\overrightarrow {AB} + \overrightarrow {BC} + \overrightarrow {CD} + \overrightarrow {DA} \]
\[ = \overrightarrow {AC} + \overrightarrow {CD} + \overrightarrow {DA} \]
\( = \overrightarrow {AD} + \overrightarrow {DA} \)
\( = \overrightarrow {{\rm{AA}}} \)
\( = \overrightarrow 0 \)
Vậy \[\overrightarrow {AB} + \overrightarrow {BC} + \overrightarrow {CD} + \overrightarrow {DA} = \overrightarrow 0 \]
Lời giải
Lời giải
Theo quy tắc ba điểm ta có:
\(\overrightarrow {AB} + \overrightarrow {CD} \)
\( = \left( {\overrightarrow {AD} + \overrightarrow {DB} } \right) + \left( {\overrightarrow {CB} + \overrightarrow {BD} } \right)\)
\( = \overrightarrow {AD} + \overrightarrow {DB} + \overrightarrow {CB} + \overrightarrow {BD} \)
\( = \overrightarrow {AD} + \overrightarrow {CB} + \left( {\overrightarrow {BD} + \overrightarrow {DB} } \right)\)
\( = \overrightarrow {AD} + \overrightarrow {CB} + \overrightarrow {BB} \)
\( = \overrightarrow {AD} + \overrightarrow {CB} + \overrightarrow 0 \)
\( = \overrightarrow {AD} + \overrightarrow {CB} \)
Vậy \[\overrightarrow {AB} + \overrightarrow {CD} = \overrightarrow {AD} + \overrightarrow {CB} .\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
