Câu hỏi:

11/07/2024 3,539

Cho hai vectơ \(\overrightarrow a \) và \(\overrightarrow b \) không cùng phương. Chứng minh rằng:

|a|-|b|<|a+b|<|a|+|b|

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Giả sử ba điểm A, B, C thoả mãn: \(\overrightarrow a = \overrightarrow {AB} ,\overrightarrow b = \overrightarrow {BC} \)

Cho hai vectơ  a và vecto b không cùng phương. Chứng minh rằng:| vecto a | - | vecto b | (ảnh 1)

Khi đó ta có: \(\overrightarrow a + \overrightarrow b = \overrightarrow {AB} + \overrightarrow {BC} = \overrightarrow {AC} \) (quy tắc ba điểm)

Do đó:

+) \(\left| {\overrightarrow a } \right| = \left| {\overrightarrow {AB} } \right| = AB;\)

+) \(\left| {\overrightarrow b } \right| = \left| {\overrightarrow {BC} } \right| = BC;\)

+) \(\left| {\overrightarrow a + \overrightarrow b } \right| = \left| {\overrightarrow {AC} } \right| = AC\)

Mặt khác: xét tam giác ABC, theo bất đẳng thức trong tam giác ta có:

AB – BC < AC < AB + BC

Hay \[\left| {\overrightarrow a } \right| - \left| {\overrightarrow b } \right| < \left| {\overrightarrow a + \overrightarrow b } \right| < \left| {\overrightarrow a } \right| + \left| {\overrightarrow b } \right|\] \(\)

Vậy \(\left| {\overrightarrow a } \right| - \left| {\overrightarrow b } \right| < \left| {\overrightarrow a + \overrightarrow b } \right| < \left| {\overrightarrow a } \right| + \left| {\overrightarrow b } \right|.\)

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

 

Trên mặt phẳng, chất điểm A chịu tác dụng của ba lực \(\overrightarrow {{F_1}} ,\overrightarrow {{F_2}} ,\overrightarrow {{F_3}} \) và ở trạng thái cân bằng. Góc giữa hai vectơ \(\overrightarrow {{F_1}} ,\overrightarrow {{F_2}} \) bằng 60°. Tính độ lớn của \(\overrightarrow {{F_3}} \), biết \(\left| {\overrightarrow {{F_1}} } \right| = \left| {\overrightarrow {{F_2}} } \right| = 2\sqrt 3 N.\)

Xem đáp án » 11/07/2024 7,934

Câu 2:

Trên Hình 4.7 biểu diễn ba lực \(\overrightarrow {{F_1}} ,\overrightarrow {{F_2}} ,\overrightarrow {{F_3}} \) cùng tác động vào một vật ở vị trí cân bằng A.

Trên Hình 4.7 biểu diễn ba lực vecto F1 ,vecto F2 ,vecto F3 cùng tác động vào một vật ở vị trí cân bằng A. Cho biết (ảnh 1)

Cho biết \[\left| {\overrightarrow {{F_1}} } \right| = 30N,\left| {\overrightarrow {{F_2}} } \right| = 40N.\] Tính cường độ của lực \(\overrightarrow {{F_3}} .\)

Xem đáp án » 11/07/2024 5,859

Câu 3:

Cho tam giác ABC. Gọi D, E, F theo thứ tự là trung điểm của các cạnh BC, CA. AB.

Xác định vectơ \[\overrightarrow {AF} -\overrightarrow {BD} + \overrightarrow {CE} .\]

Xem đáp án » 11/07/2024 4,190

Câu 4:

Cho hình bình hành ABCD tâm O. M là một điểm tuỳ ý thuộc cạnh BC, khác B và C. MO cắt cạnh AD tại N.

Gọi G là trọng tâm tam giác BCD. Chứng minh rằng G cũng là trọng tâm tam giác MNC.

Xem đáp án » 11/07/2024 2,687

Câu 5:

Cho tứ giác ABCD.

a) Chứng minh rằng \[\overrightarrow {AB} + \overrightarrow {BC} + \overrightarrow {CD} + \overrightarrow {DA} = \overrightarrow 0 \]

b) Chứng minh rằng \[\overrightarrow {AB} + \overrightarrow {CD} = \overrightarrow {AD} + \overrightarrow {CB} .\]

Xem đáp án » 13/07/2022 1,132

Câu 6:

Cho tứ giác ABCD.

Chứng minh rằng \[\overrightarrow {AB} + \overrightarrow {CD} = \overrightarrow {AD} + \overrightarrow {CB} .\]

Xem đáp án » 13/07/2022 752
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua