Câu hỏi:

13/07/2022 654

Cho hình bình hành ABCD tâm O. M là một điểm tuỳ ý thuộc cạnh BC, khác B và C. MO cắt cạnh AD tại N.

Chứng minh rằng O là trung điểm MN.

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

Đề toán-lý-hóa Đề văn-sử-địa Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Cho hình bình hành ABCD tâm O. M là một điểm tuỳ ý thuộc cạnh BC, khác B và C. MO cắt cạnh AD tại N. Chứng minh rằng O là trung điểm MN.  (ảnh 1)

ABCD là hình bình hành tâm O

Nên O là trung điểm của AC và BD và \(\widehat {ADO} = \widehat {CBO}\)

Xét ∆ODN và ∆OBM có:

OD = OB (do O là trung điểm của BD),

\(\widehat {DON} = \widehat {BOM}\) (hai góc đối đỉnh),

\(\widehat {NDO} = \widehat {MBO}\)(do \(\widehat {ADO} = \widehat {CBO}\))

∆ODN = ∆OBM (g.c.g)

ON = OM (hai cạnh tương ứng)

O là trung điểm của NM.

Vậy O là trung điểm của NM.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

 

Trên mặt phẳng, chất điểm A chịu tác dụng của ba lực \(\overrightarrow {{F_1}} ,\overrightarrow {{F_2}} ,\overrightarrow {{F_3}} \) và ở trạng thái cân bằng. Góc giữa hai vectơ \(\overrightarrow {{F_1}} ,\overrightarrow {{F_2}} \) bằng 60°. Tính độ lớn của \(\overrightarrow {{F_3}} \), biết \(\left| {\overrightarrow {{F_1}} } \right| = \left| {\overrightarrow {{F_2}} } \right| = 2\sqrt 3 N.\)

Xem đáp án » 11/07/2024 7,883

Câu 2:

Trên Hình 4.7 biểu diễn ba lực \(\overrightarrow {{F_1}} ,\overrightarrow {{F_2}} ,\overrightarrow {{F_3}} \) cùng tác động vào một vật ở vị trí cân bằng A.

Trên Hình 4.7 biểu diễn ba lực vecto F1 ,vecto F2 ,vecto F3 cùng tác động vào một vật ở vị trí cân bằng A. Cho biết (ảnh 1)

Cho biết \[\left| {\overrightarrow {{F_1}} } \right| = 30N,\left| {\overrightarrow {{F_2}} } \right| = 40N.\] Tính cường độ của lực \(\overrightarrow {{F_3}} .\)

Xem đáp án » 11/07/2024 5,816

Câu 3:

Cho tam giác ABC. Gọi D, E, F theo thứ tự là trung điểm của các cạnh BC, CA. AB.

Xác định vectơ \[\overrightarrow {AF} -\overrightarrow {BD} + \overrightarrow {CE} .\]

Xem đáp án » 11/07/2024 4,120

Câu 4:

Cho hai vectơ \(\overrightarrow a \) và \(\overrightarrow b \) không cùng phương. Chứng minh rằng:

|a|-|b|<|a+b|<|a|+|b|

Xem đáp án » 11/07/2024 3,514

Câu 5:

Cho hình bình hành ABCD tâm O. M là một điểm tuỳ ý thuộc cạnh BC, khác B và C. MO cắt cạnh AD tại N.

Gọi G là trọng tâm tam giác BCD. Chứng minh rằng G cũng là trọng tâm tam giác MNC.

Xem đáp án » 11/07/2024 2,655

Câu 6:

Cho tứ giác ABCD.

a) Chứng minh rằng \[\overrightarrow {AB} + \overrightarrow {BC} + \overrightarrow {CD} + \overrightarrow {DA} = \overrightarrow 0 \]

b) Chứng minh rằng \[\overrightarrow {AB} + \overrightarrow {CD} = \overrightarrow {AD} + \overrightarrow {CB} .\]

Xem đáp án » 13/07/2022 1,106

Câu 7:

Cho tứ giác ABCD.

Chứng minh rằng \[\overrightarrow {AB} + \overrightarrow {CD} = \overrightarrow {AD} + \overrightarrow {CB} .\]

Xem đáp án » 13/07/2022 740