Câu hỏi:
13/07/2022 502Cho tam giác ABC. Gọi D, E, F theo thứ tự là trung điểm của các cạnh BC, CA. AB.
Xác định điểm M thoả mãn \[\overrightarrow {{\rm{AF}}} - \overrightarrow {BD} + \overrightarrow {CE} = \overrightarrow {MA} .\]
Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).
Quảng cáo
Trả lời:
Lời giải
Điểm M thoả mãn \[\overrightarrow {{\rm{AF}}} - \overrightarrow {BD} + \overrightarrow {CE} = \overrightarrow {MA} .\]
Mà \[\overrightarrow {AF} --\overrightarrow {BD} + \overrightarrow {CE} = \overrightarrow {CB} \] (câu a)
Nên \(\overrightarrow {MA} = \overrightarrow {CB} \)
Do đó MABC là hình bình hành (theo kết quả bài tập 4.3 SGK Toán 10 tập 1)
Vậy điểm M thoả mãn tứ giác MABC là hình bình hành.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Trên mặt phẳng, chất điểm A chịu tác dụng của ba lực \(\overrightarrow {{F_1}} ,\overrightarrow {{F_2}} ,\overrightarrow {{F_3}} \) và ở trạng thái cân bằng. Góc giữa hai vectơ \(\overrightarrow {{F_1}} ,\overrightarrow {{F_2}} \) bằng 60°. Tính độ lớn của \(\overrightarrow {{F_3}} \), biết \(\left| {\overrightarrow {{F_1}} } \right| = \left| {\overrightarrow {{F_2}} } \right| = 2\sqrt 3 N.\)
Câu 2:
Trên Hình 4.7 biểu diễn ba lực \(\overrightarrow {{F_1}} ,\overrightarrow {{F_2}} ,\overrightarrow {{F_3}} \) cùng tác động vào một vật ở vị trí cân bằng A.
Cho biết \[\left| {\overrightarrow {{F_1}} } \right| = 30N,\left| {\overrightarrow {{F_2}} } \right| = 40N.\] Tính cường độ của lực \(\overrightarrow {{F_3}} .\)
Câu 3:
Cho tam giác ABC. Gọi D, E, F theo thứ tự là trung điểm của các cạnh BC, CA. AB.
Xác định vectơ \[\overrightarrow {AF} -\overrightarrow {BD} + \overrightarrow {CE} .\]
Câu 4:
Cho hai vectơ \(\overrightarrow a \) và \(\overrightarrow b \) không cùng phương. Chứng minh rằng:
Câu 5:
Cho hình bình hành ABCD tâm O. M là một điểm tuỳ ý thuộc cạnh BC, khác B và C. MO cắt cạnh AD tại N.
Gọi G là trọng tâm tam giác BCD. Chứng minh rằng G cũng là trọng tâm tam giác MNC.
Câu 6:
Cho tứ giác ABCD.
a) Chứng minh rằng \[\overrightarrow {AB} + \overrightarrow {BC} + \overrightarrow {CD} + \overrightarrow {DA} = \overrightarrow 0 \]
b) Chứng minh rằng \[\overrightarrow {AB} + \overrightarrow {CD} = \overrightarrow {AD} + \overrightarrow {CB} .\]
Câu 7:
Cho tứ giác ABCD.
Chứng minh rằng \[\overrightarrow {AB} + \overrightarrow {CD} = \overrightarrow {AD} + \overrightarrow {CB} .\]
13 câu Trắc nghiệm Tích của vectơ với một số có đáp án (Thông hiểu)
16 câu Trắc nghiệm Toán 10 Kết nối tri thức Mệnh đề có đáp án
75 câu trắc nghiệm Vectơ nâng cao (P1)
12 Bài tập Ứng dụng của hàm số bậc hai để giải bài toán thực tế (có lời giải)
10 Bài tập Tính số trung bình, trung vị, tứ phân vị và mốt của mẫu số liệu cho trước (có lời giải)
185 câu Trắc nghiệm Toán 10 Bài 1:Phương trình đường thẳng trong mặt phẳng oxy có đáp án (Mới nhất)
15 câu Trắc nghiệm Toán 10 Kết nối tri thức Số gần đúng và sai số có đáp án
15 câu Trắc nghiệm Toán 10 chân trời sáng tạo Mệnh đề có đáp án
về câu hỏi!