Câu hỏi:

12/07/2024 2,572 Lưu

Một nhóm người gồm 3 bạn nam và 3 bạn nữ mua 6 chiếc vé xem phim với các chỗ ngồi liên tiếp nhau.

Có bao nhiêu cách xếp chỗ ngồi sao cho các bạn nam và các bạn nữ ngồi xen kẽ nhau?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Để tiện hình dung, ta đánh số các chiếc ghế từ trái qua phải 1, 2, 3, 4, 5, 6.

1

2

3

4

5

6

Để các bạn nam, nữ ngồi xen kẽ thì có hai phương án:

– Phương án 1: các bạn nữ ngồi các ghế 1, 3 và 5, các bạn nam ngồi các ghế 2, 4 và 6;

– Phương án 2: các bạn nữ ngồi các ghế 2, 4 và 6, các bạn nam ngồi các ghế 1, 3 và 5;

Ta hãy đếm số cách ngồi theo từng phương án. Với mỗi phương án, mỗi cách ngồi có được thực hiện qua 2 công đoạn:

– Công đoạn 1: xếp chỗ cho các bạn nữ;

– Công đoạn 2: xếp chỗ cho các bạn nam.

Số cách xếp chỗ cho 3 bạn nữ vào 3 chỗ ngồi chính là số hoán vị của 3, nghĩa là:

3! = 3.2.1 = 6 (cách).

Tương tự, số cách xếp chỗ cho 3 bạn nam vào 3 chỗ ngồi là:

3! = 3.2.1 = 6 (cách).

Vì vậy, theo quy tắc nhân, số cách xếp chỗ ngồi của mỗi phương án là:

6.6 = 36 (cách).

Như vậy, theo quy tắc cộng thì tổng số các cách xếp chỗ là:

36 + 36 = 72 (cách).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Có tất cả 5 + 3 = 8 bạn học sinh.

Việc xếp 8 bạn học sinh thoả mãn yêu cầu bài toán có thể được thực hiện qua hai công đoạn:

– Công đoạn 1: chọn ra 2 bạn trong số 5 bạn nam để xếp vào hai vị trí ngoài cùng bên trái và ngoài cùng bên phải;

– Công đoạn 2: xếp 8 – 2 = 6 bạn còn lại vào các vị trí giữa hai bạn nam đã xếp.

Đối với công đoạn 1, số cách chọn ra hai người và xếp vào hai vị trí là:

\[A_5^2 = \frac{{5!}}{{(5 - 2)!}} = \frac{{5.4.3!}}{{3!}} = 5.4 = 20\] (cách).

Đối với công đoạn 2, số cách xếp 6 người vào 6 vị trí còn lại là:

6! = 6 . 5 . 4 . 3 . 2 . 1 = 720 (cách)

Theo quy tắc nhân, tổng số cách xếp là: 20 . 720 = 14 400 (cách).

Lời giải

Hướng dẫn giải

Đáp án đúng là: A

Một số có ba chữ số như vậy có dạng \(\overline {abc} \), với a, b, c khác nhau, được chọn từ các chữ số 1; 2; 3; 4; 5; 6; 7; 8; 9 và c chỉ nhận một trong các giá trị 2; 4; 6; 8. Ta có thể xây dựng một số như vậy bằng cách trước hết chọn c, sau đó chọn ra hai chữ số có sắp thứ tự a, b từ các chữ số còn lại.

Có 4 cách chọn c là một trong các chữ số 2; 4; 6; 8.

Có 8 cách chọn a (bớt đi 1 số đã chọn bởi c).

Có 7 cách chọn b (bớt đi 1 số đã chọn bởi c, 1 số đã chọn bởi a).

Vì thế, theo quy tắc nhân, số các số có tính chất của bài toán là:

4 . 8 . 7 = 224 (số).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP