Câu hỏi:

13/07/2024 3,801

Một công ty bắt đầu sản xuất và bán một loại máy tính xách tay từ năm 2018. Số lượng loại máy tính đó bán được trong hai năm liên tiếp 2018 và 2019 lần lượt là 3,2 nghìn và 4 nghìn chiếc. Theo nghiên cứu dự báo thị trường của công ty, trong khoảng 10 năm kể từ năm 2018, số lượng máy tính loại đó bán được mỗi năm có thể được mô tả bởi một hàm số bậc hai.

Giả sử t là thời gian (theo đơn vị năm) tính từ năm 2018. Số lượng loại máy tính đó bán được trong năm 2018 và năm 2019 lần lượt được biểu diễn bởi các điểm (0; 3,2) và (1; 4). Giả sử điểm (0; 3,2) là đỉnh đồ thị của hàm số bậc hai này.

a) Lập công thức của hàm số mô tả số lượng máy tính xách tay bán được qua từng năm.

b) Tính số lượng máy tính xách tay đó bán được trong năm 2024.

c) Đến năm bao nhiêu thì số lượng máy tính xách tay đó bán được trong năm sẽ vượt mức 52 nghìn chiếc?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

a) Giả sử hàm số cần lập có dạng y = f(t) = at2 + bt + c, với a, b, c là các số thực, a ≠ 0.

Trong đó, t là thời gian (theo đơn vị năm) tính từ năm 2018 nên t > 0 và ta quy ước tại năm 2018 thì t = 0, năm 2019 thì t = 1, tương tự cho các năm sau và f(t) là số lượng máy tính bán ra qua từng năm.

Số lượng loại máy tính đó bán được trong năm 2018 và năm 2019 lần lượt được biểu diễn bởi các điểm (0; 3,2) và (1; 4). Do đó đồ thị hàm số y = f(t) = at2 + bt + c đi qua các điểm (0; 3,2) và (1; 4) nên ta có:

3,2 = a . 02 + b . 0 + c c = 3,2

Và 4 = a . 12 + b . 1 + c a + b + 3,2 = 4 a + b = 0,8 a = 0,8 – b (1).

Lại có đồ thị hàm số trên có đỉnh là (0; 3,2) nên \( - \frac{b}{{2a}} = 0 \Rightarrow b = 0\) (do a ≠ 0).

Thay vào (1) ta có: a = 0,8 – 0 = 0,8.

Vậy ta có hàm số: y = f(t) = 0,8t2 + 3,2.

b) Đến năm 2024 thì loại máy tính trên đã bán ra được số năm là: 2024 – 2018 = 6 (năm). Do đó t = 6.

Suy ra: f(6) = 0,8 . 62 + 3,2 = 32.

Vậy trong năm 2024 số lượng máy tính bán ra được là 32 nghìn chiếc.

c) Số lượng máy tính xách tay bán ra được trong năm vượt mức 52 nghìn chiếc nghĩa là f(t) > 52 hay 0,8t2 + 3,2 > 52 t2 > 61 t < \( - \sqrt {61} \) hoặc t >\(\sqrt {61} \).

Mà t > 0 nên t > \(\sqrt {61} \) 7,8.

Do đó trong năm thứ 8 kể từ khi bắt đầu bán thì số lượng máy tính bán ra được trong năm sẽ vượt mức 52 nghìn chiếc và đó chính là năm 2018 + 8 = 2026.

Vậy trong năm 2026 thì số lượng máy tính xách tay đó bán được trong năm sẽ vượt mức 52 nghìn chiếc.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Đáp án đúng là: A

Xét tam thức bậc hai f(x) = x2 – 2mx + 4 có hệ số a = 1 > 0, ∆' = (– m)2 – 1 . 4 = m2 – 4.

Để f(x) > 0 (cùng dấu với hệ số a) với mọi \(x \in \mathbb{R}\) thì ∆' < 0 hay m2 – 4 < 0.

m2 < 4 – 2 < m < 2.

Trong các đáp án đã cho, ta thấy đáp án A. m = – 1 là thỏa mãn.

Lời giải

Hướng dẫn giải

Điều kiện: a ≠ 0.

a) (P) đi qua điểm A(1; 1) nên tọa độ điểm A thỏa mãn hàm số y = ax2 + bx + 3, do đó ta có: 1 = a . 12 + b . 1 + 3 a + b = – 2 a = – 2 – b      (1a).

(P) đi qua điểm B(– 1; 0) nên tọa độ điểm B thỏa mãn hàm số y = ax2 + bx + 3, do đó ta có: 0 = a . (– 1)2 + b . (– 1) + 3 a – b = – 3 a = – 3 + b     (2a).

Từ (1a) và (2a) suy ra: – 2 – b = – 3 + b 2b = 1 b = \(\frac{1}{2}\).

Suy ra: a = – 2 – \(\frac{1}{2}\) = \( - \frac{5}{2}\).

Vậy phương trình parabol (P): \(y = - \frac{5}{2}{x^2} + \frac{1}{2}x + 3\).

b) (P) đi qua điểm M(1; 2) nên tọa độ điểm M thỏa mãn hàm số y = ax2 + bx + 3, do đó ta có: 2 = a . 12 + b . 1 + 3 a + b = – 1 a = – 1 – b      (1b).

(P) nhận đường thẳng x = 1 làm trục đối xứng nên \(\frac{{ - b}}{{2a}} = 1 \Leftrightarrow 2a = - b \Leftrightarrow a = - \frac{1}{2}b\) (2b).

Từ (1b) và (2b) suy ra: \( - 1 - b = - \frac{1}{2}b \Leftrightarrow \frac{1}{2}b = - 1 \Leftrightarrow b = - 2\).

Suy ra a = – 1 – (– 2) = 1.

Vậy phương trình parabol (P): y = x2 – 2x + 3.

c) (P) có đỉnh là I(1; 4) hay (P) đi qua điểm I(1; 4) nên tọa độ điểm I thỏa mãn hàm số y = ax2 + bx + 3, do đó ta có: 4 = a . 12 + b . 1 + 3 a + b = 1 a = 1 – b    (1c).

Vì I là đỉnh của (P) nên \(\frac{{ - b}}{{2a}} = 1 \Leftrightarrow 2a = - b \Leftrightarrow a = - \frac{1}{2}b\)   (2c).

Từ (1c) và (2c) suy ra: 1 – b = \( - \frac{1}{2}b\)\( \Leftrightarrow \frac{1}{2}b = 1 \Leftrightarrow b = 2\).

Suy ra a = 1 – b = 1 – 2 = – 1.

Vậy phương trình parabol (P): y = – x2 + 2x + 3.

Câu 3

Tập nghiệm của phương trình \(\sqrt {2{x^2} - 3} = x - 1\) là

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Hàm số y = x2 – 5x + 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Parabol y = – x2 + 2x + 3 có đỉnh là

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay