Một lớp có 40 học sinh trong đó có 16 nam. Trong các em nam có 3 em thuận tay trái. Trong các em nữ có 2 em thuận tay trái. Chọn ngẫu nhiên hai em. Tính xác suất để hai em chọn được có một em nữ không thuận tay trái và một em nam thuận tay trái.
Một lớp có 40 học sinh trong đó có 16 nam. Trong các em nam có 3 em thuận tay trái. Trong các em nữ có 2 em thuận tay trái. Chọn ngẫu nhiên hai em. Tính xác suất để hai em chọn được có một em nữ không thuận tay trái và một em nam thuận tay trái.
Quảng cáo
Trả lời:
Số cách để chọn ngẫu nhiên hai em trong 40 em học sinh là: = 780 (cách).
Do đó, ta có n(Ω) = 780.
Gọi A là biến cố: “Hai em chọn được có một em nữ không thuận tay trái và một em nam thuận tay trái”
Lớp có 40 – 16 = 24 em nữ, trong đó, 24 – 2 = 22 em không thuận tay trái. Do đó, số cách chọn 1 em nữ không thuận tay trái là 22 cách.
Trong lớp có 3 em nam thuận tay trái, do đó, số cách chọn 1 em nam thuận tay trái là 3 cách.
Theo quy tắc nhân ta có: n(A) = 22 . 3 = 66.
Vậy xác suất của biến cố A là: P(A) = .
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a)
Kí hiệu Đ, X, V tương ứng là viên bi màu đỏ, xanh, vàng.
Ta có sơ đồ hình cây mô tả các phần tử của không gian mẫu:

Do đó, ta có:
Ω = {(ĐXĐ; ĐXX; ĐVĐ; ĐVX; XXĐ; XXX; XVĐ; XVX; VXĐ; VXX; VVĐ; VVX}.
Vậy n(Ω) = 12.
Lời giải
Gọi a là số trên thẻ rút được từ hộp I, a ∈ {1; 2; 3}.
Gọi b là số trên thẻ rút được từ hộp II, b ∈ {2; 4; 6; 8}.
Gọi c là số trên thẻ rút được từ hộp III, c ∈ {1; 3; 5; 7; 9; 11}.
Ta có không gian mẫu: Ω = {(a, b, c) | a ∈ {1; 2; 3}, b ∈ {2; 4; 6; 8}, c ∈ {1; 3; 5; 7; 9; 11}}.
Theo quy tắc nhân, ta có: n(Ω) = 3 . 4 . 6 = 72.
Xét biến cố A: “Tổng ba số trên ba tấm thẻ là số lẻ”.
Do b luôn là một số chẵn và c luôn là một số lẻ nên tổng b + c luôn là một số lẻ, do đó để (a + b + c) là một số lẻ thì a phải là số chẵn. Do đó, a = 2.
Khi đó, A = {(2, b, c) | b ∈ {2; 4; 6; 8}, c ∈ {1; 3; 5; 7; 9; 11}}.
Do đó, n(A) = 1 . 4 . 6 = 24.
Vậy P(A) =
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.