Câu hỏi:

13/07/2024 3,602 Lưu

Một lớp có 40 học sinh trong đó có 16 nam. Trong các em nam có 3 em thuận tay trái. Trong các em nữ có 2 em thuận tay trái. Chọn ngẫu nhiên hai em. Tính xác suất để hai em chọn được có một em nữ không thuận tay trái và một em nam thuận tay trái.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Số cách để chọn ngẫu nhiên hai em trong 40 em học sinh là: C402 = 780 (cách).

Do đó, ta có n(Ω) = 780.

Gọi A là biến cố: “Hai em chọn được có một em nữ không thuận tay trái và một em nam thuận tay trái”

Lớp có 40 – 16 = 24 em nữ, trong đó, 24 – 2 = 22 em không thuận tay trái. Do đó, số cách chọn 1 em nữ không thuận tay trái là 22 cách.

Trong lớp có 3 em nam thuận tay trái, do đó, số cách chọn 1 em nam thuận tay trái là 3 cách.

Theo quy tắc nhân ta có: n(A) = 22 . 3 = 66.

Vậy xác suất của biến cố A là: P(A) = n(A)n(Ω)=66780=11130.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a)

Kí hiệu Đ, X, V tương ứng là viên bi màu đỏ, xanh, vàng.

Ta có sơ đồ hình cây mô tả các phần tử của không gian mẫu:

Có ba chiếc hộp trong đó hộp I có một viên bi đỏ, một viên bi xanh, một viên bi vàng (ảnh 1)

Do đó, ta có:

Ω = {(ĐXĐ; ĐXX; ĐVĐ; ĐVX; XXĐ; XXX; XVĐ; XVX; VXĐ; VXX; VVĐ; VVX}.

Vậy n(Ω) = 12.

Lời giải

Gọi a là số trên thẻ rút được từ hộp I, a {1; 2; 3}.

Gọi b là số trên thẻ rút được từ hộp II, b {2; 4; 6; 8}.

Gọi c là số trên thẻ rút được từ hộp III, c {1; 3; 5; 7; 9; 11}.

Ta có không gian mẫu: Ω = {(a, b, c) | a {1; 2; 3}, b {2; 4; 6; 8}, c {1; 3; 5; 7; 9; 11}}.

Theo quy tắc nhân, ta có: n(Ω) = 3 . 4 . 6 = 72.

Xét biến cố A: “Tổng ba số trên ba tấm thẻ là số lẻ”.

Do b luôn là một số chẵn và c luôn là một số lẻ nên tổng b + c luôn là một số lẻ, do đó để (a + b + c) là một số lẻ thì a phải là số chẵn. Do đó, a = 2.

Khi đó, A = {(2, b, c) | b {2; 4; 6; 8}, c {1; 3; 5; 7; 9; 11}}.

Do đó, n(A) = 1 . 4 . 6 = 24.

Vậy P(A) = n(A)n(Ω)=2472=13

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP