Câu hỏi:

13/07/2024 1,027

b) Tính xác suất để:

• Tất cả đều vào một quán;

• Mỗi quán có đúng 2 bạn vào;

• Quán A có 3 bạn vào, quán B có 1 bạn vào;

• Một quán có 3 bạn vào, quán kia có 1 bạn vào.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

b)

Ta có không gian mẫu:

Ω = {AAAA; AAAB; AABA; AABB; ABAA; ABAB; ABBA; ABBB; BAAA; BAAB; BABA; BABB; BBAA; BBAB; BBBA; BBBB}.

Do đó, n(Ω) = 16.

Gọi biến cố E: “Tất cả đều vào một quán”. Ta có:

E = {AAAA; BBBB}, n(E) = 2, suy ra P(E) = n(E)n(Ω)=216=18

Gọi biến cố F: “Mỗi quán có đúng hai bạn vào”. Ta có:

F = {AABB; ABAB; ABBA; BAAB; BABA; BBAA}, n(F) = 6,

suy ra P(F) = n(F)n(Ω)=616=38

Gọi biến cố G: “Quán A có 3 bạn vào, quán B có 1 bạn vào”. Ta có:

G = {AAAB; AABA; ABAA; BAAA}, n(G) = 4, suy ra P(G) = n(G)n(Ω)=416=14

Gọi biến cố K: “Một quán có 3 bạn vào, quán kia có 1 bạn vào.”. Ta có:

K1: “Quán A có 3 bạn vào, quán B có 1 bạn vào” nên K1 = G, n(K1) = 4.

K2: “Quán B có 3 bạn vào, quán A có 1 bạn vào”. Ta có:

K2 = {BBBA; BBAB; BABB; ABBB}, n(K2) = 4

n(K) = n(K1) + n(K2) = 4 + 4 = 8.

Vậy P(K) = n(K)n(Ω)=816=12

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a)

Kí hiệu Đ, X, V tương ứng là viên bi màu đỏ, xanh, vàng.

Ta có sơ đồ hình cây mô tả các phần tử của không gian mẫu:

Có ba chiếc hộp trong đó hộp I có một viên bi đỏ, một viên bi xanh, một viên bi vàng (ảnh 1)

Do đó, ta có:

Ω = {(ĐXĐ; ĐXX; ĐVĐ; ĐVX; XXĐ; XXX; XVĐ; XVX; VXĐ; VXX; VVĐ; VVX}.

Vậy n(Ω) = 12.

Lời giải

Số cách để chọn ngẫu nhiên hai em trong 40 em học sinh là: C402 = 780 (cách).

Do đó, ta có n(Ω) = 780.

Gọi A là biến cố: “Hai em chọn được có một em nữ không thuận tay trái và một em nam thuận tay trái”

Lớp có 40 – 16 = 24 em nữ, trong đó, 24 – 2 = 22 em không thuận tay trái. Do đó, số cách chọn 1 em nữ không thuận tay trái là 22 cách.

Trong lớp có 3 em nam thuận tay trái, do đó, số cách chọn 1 em nam thuận tay trái là 3 cách.

Theo quy tắc nhân ta có: n(A) = 22 . 3 = 66.

Vậy xác suất của biến cố A là: P(A) = n(A)n(Ω)=66780=11130.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay