Câu hỏi:

11/07/2024 2,304

Trong mặt phẳng toạ độ Oxy cho hai điểm C(1; 6) và D(11; 2).

Tìm toạ độ của điểm E thuộc trục tung sao cho vectơ \(\overrightarrow {EC} + \overrightarrow {ED} \) có độ dài ngắn nhất.

Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Giả sử E(0; yE) là điểm thuộc trục tung.

Với C(1; 6) và D(11; 2) ta có:

\[\overrightarrow {EC} = & & \left( {1;6 - {y_E}} \right)\] và \(\overrightarrow {ED} = \left( {11;2 - {y_E}} \right)\)

\( \Rightarrow \overrightarrow {EC} + \overrightarrow {ED} = \left( {1 + 11;6 - {y_E} + 2 - {y_E}} \right)\)

\( \Rightarrow \overrightarrow {EC} + \overrightarrow {ED} = \left( {12;8 - 2{y_E}} \right)\)

\( \Rightarrow \left| {\overrightarrow {EC} + \overrightarrow {ED} } \right| = \sqrt {{{12}^2} + {{\left( {8 - 2{y_E}} \right)}^2}} \)

Vì (8 – 2yE)2 ≥ 0 ∀ yE

Nên 122 + (8 – 2yE)2 ≥ 122 ∀ yE

Hay \(\sqrt {{{12}^2} + {{\left( {8 - 2{y_E}} \right)}^2}} \ge 12\) ∀ yE

\( \Rightarrow \left| {\overrightarrow {EC} + \overrightarrow {ED} } \right| \ge 12\) ∀ yE

Do đó độ dài của vectơ \(\overrightarrow {EC} + \overrightarrow {ED} \) nhỏ nhất bằng 12

Dấu “=’ xảy ra 8 – 2yE = 0

yE = 4

Vậy với E(0; 4) thì vectơ \(\overrightarrow {EC} + \overrightarrow {ED} \) có độ dài ngắn nhất.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Để kéo đường dây điện băng qua một hồ hình chữ nhật ABCD với độ dài AB = 200 m, AD = 180 m, người ta dự định làm 4 cột điện liên tiếp cách đều, cột thứ nhất nằm trên bờ AB và cách đỉnh A khoảng cách 20 m, cột thứ tư nằm trên bờ CD và cách đỉnh C khoảng cách 30 m. Tính các khoảng cách từ vị trí các cột thứ hai, thứ ba đến các bờ AB, AD.

Xem đáp án » 11/07/2024 24,909

Câu 2:

Trong mặt phẳng toạ độ Oxy cho ba điểm M(4; 0), N(5; 2) và P(2, 3). Tìm toạ độ các đỉnh của tam giác ABC, biết M, N, P theo thứ tự là trung điểm cạnh BC, CA, AB.

Xem đáp án » 11/07/2024 5,043

Câu 3:

Trong mặt phẳng toạ độ Oxy cho ba điểm A(1; 2), B(3; 4) và C(2; –1).

Tìm toạ độ tâm I của đường tròn ngoại tiếp và trực tâm H của tam giác ABC.

Xem đáp án » 11/07/2024 4,911

Câu 4:

Trong mặt phẳng toạ độ Oxy cho ba điểm A(2;–1), B(1; 4) và C(7; 0).

Tính độ dài các đoạn thẳng AB, BC và CA. Từ đó suy ra tam giác ABC là một tam giác vuông cân.

Xem đáp án » 11/07/2024 3,294

Câu 5:

Trong mặt phẳng toạ độ Oxy cho ba điểm A(1; 2), B(3; 4) và C(2; –1).

Chứng minh rằng A, B, C là ba đỉnh của một tam giác. Tìm toạ độ trọng tâm của tam giác đó.

Xem đáp án » 11/07/2024 3,171

Câu 6:

Trong mặt phẳng toạ độ Oxy cho ba điểm A(2;–1), B(1; 4) và C(7; 0).

Tìm toạ độ của điểm D sao cho tứ giác ABDC là một hình vuông.

Xem đáp án » 11/07/2024 2,639

Câu 7:

Trong mặt phẳng toạ độ Oxy cho hai điểm M(–3; 2) và N(2; 7).

Tìm toạ độ của điểm P thuộc trục tung sao cho M, N, P thẳng hàng.

Xem đáp án » 11/07/2024 2,636

Bình luận


Bình luận