Câu hỏi:

11/07/2024 5,414

Trong mặt phẳng toạ độ Oxy cho hai điểm A(1; 4) và C(9; 2) là hai đỉnh của hình vuông ABCD. Tìm toạ độ các đỉnh B, D, biết rằng tung độ của B là một số âm.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Trong mặt phẳng toạ độ Oxy cho hai điểm A(1; 4) và C(9; 2) là hai đỉnh của hình vuông ABCD. Tìm toạ độ các đỉnh B, D, biết rằng tung độ của B là một số âm. (ảnh 1)

Gọi I là giao điểm của AC và BD

Vì ABCD là hình vuông nên ta có: I là trung điểm của AC; AC = BD và AC ⊥ BD tại I.

• I là trung điểm của AC nên:

\(\left\{ \begin{array}{l}{x_I} = \frac{{1 + 9}}{2} = 5\\{y_I} = \frac{{4 + 2}}{2} = 3\end{array} \right.\) I(5; 3)

Giả sử B(x; y) (y < 0) và D(a; b)

Vì I là trung điểm của BD nên ta có:

\[\left\{ \begin{array}{l}5 = \frac{{x + a}}{2}\\3 = \frac{{y + b}}{2}\end{array} \right. \Rightarrow \left\{ \begin{array}{l}a = 10 - x\\b = 6 - y\end{array} \right.\] D(10 – x; 6 – y)

Với A(1; 4); C(9; 2); B(x; y) và D(10 – x; 6 – y) ta có:

\(\overrightarrow {AC} = \left( {8; - 2} \right)\) và \(\overrightarrow {BD} = \left( {10 - 2x;6 - 2y} \right)\)

• AC ⊥ BD \[ \Leftrightarrow \overrightarrow {AC} \bot \overrightarrow {BD} \Leftrightarrow \overrightarrow {AC} .\overrightarrow {BD} = 0\]

8.(10 – 2x) + (–2).(6 – 2y) = 0

80 – 16x – 12 + 4y = 0

4y = 16x – 68

y = 4x – 17 (với y < 0)

• AC = BD AC2 = BD2

82 + (–2)2 = (10 – 2x)2 + (6 – 2y)2

64 + 4 = (10 – 2x)2 + [6 – 2(4x – 17)]2

(10 – 2x)2 + (6 – 8x + 34)2 = 68

(10 – 2x)2 + (40 – 8x)2 = 68

4.(x – 5)2 + 64.(x – 5)2 = 68

(x – 5)2 = 1

\( \Leftrightarrow \left[ \begin{array}{l}x - 5 = 1\\x - 5 = - 1\end{array} \right.\)

\( \Leftrightarrow \left[ \begin{array}{l}x = 6\\x = 4\end{array} \right.\)

Với x = 6 ta có y = 4.6 – 17 = 7 (không thỏa mãn y < 0)

Với x = 4 ta có y = 4.4 – 17 = –1 (thỏa mãn y < 0)

Khi đó ta có điểm B(4; –1)

Mà D(10 – x; 6 – y) nên D(6; 7).

Vậy B(4; –1) và D(6; 7).

</></></></>

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

Vì tam giác ABC vuông tại A nên AB ⊥ AC hay \(\overrightarrow {AB} \bot \overrightarrow {AC} \)

Do đó \(\overrightarrow {AB} .\overrightarrow {AC} = 0\)

Giả sử C(x; 0) là điểm thuộc trục hoành.

Với A(2; 1), B(4; 3) và C(x; 0) ta có:

\(\overrightarrow {AB} = \left( {2;2} \right)\) và \(\overrightarrow {AC} = \left( {x - 2; - 1} \right)\)

Khi đó \(\overrightarrow {AB} .\overrightarrow {AC} = 0\) 2(x – 2) + 2(–1) = 0

2x – 4 – 2 = 0

2x = 6

x = 3

Vậy C(3; 0).

\( \Rightarrow \overrightarrow {AC} = \left( {1; - 1} \right)\)

Ta có:

• \(\overrightarrow {AB} = \left( {2;2} \right) \Rightarrow AB = \sqrt {{2^2} + {2^2}} = 2\sqrt 2 \)

• \(\overrightarrow {AC} = \left( {1; - 1} \right) \Rightarrow AC = \sqrt {{1^2} + {{\left( { - 1} \right)}^2}} = \sqrt 2 \)

• \(BC = \sqrt {A{B^2} + A{C^2}} = \sqrt {{{\left( {2\sqrt 2 } \right)}^2} + {{\left( {\sqrt 2 } \right)}^2}} = \sqrt {10} \) (theo định lí Pythagore)

Khi đó chu vi tam giác ABC là:

AB + AC + BC = \(2\sqrt 2 + \sqrt 2 + \sqrt {10} = 3\sqrt 2 + \sqrt {10} \)(đơn vị độ dài)

Diện tích tam giác ABC là:

\(\frac{1}{2}.AB.AC = \frac{1}{2}.2\sqrt 2 .\sqrt 2 = 2\) (đơn vị diện tích)

Lời giải

Lời giải

Trong mặt phẳng toạ độ Oxy cho ba điểm A(–3; 2), B(1; 5) và C(3; −1). Chứng minh rằng A, B, C là ba đỉnh của một tam giác. Tìm toạ độ trọng tâm G của tam giác ấy. (ảnh 1)

Với A(–3; 2), B(1; 5) và C(3; −1) ta có:

\(\overrightarrow {AB} = \left( {4;3} \right)\)và \(\overrightarrow {AC} = \left( {6; - 3} \right)\)

Vì \(\frac{4}{6} = \frac{2}{3} \ne \frac{3}{{ - 3}} = - 1\) nên hai vectơ \(\overrightarrow {AB} \) và \(\overrightarrow {AC} \) không cùng phương

Do đó ba điểm A, B, C không thẳng hàng

Vậy A, B, C là ba đỉnh của một tam giác.

Vì G là trọng tâm của tam giác ABC nên ta có:

\(\left\{ \begin{array}{l}{x_G} = \frac{{ - 3 + 1 + 3}}{3} = \frac{1}{3}\\{y_G} = \frac{{2 + 5 + \left( { - 1} \right)}}{3} = 2\end{array} \right.\) \( \Rightarrow G\left( {\frac{1}{3};2} \right)\)

Vậy tọa độ trọng tâm của tam giác ABC là: \(G\left( {\frac{1}{3};2} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay