Câu hỏi:

13/07/2022 523

Trong mặt phẳng toạ độ Oxy cho ba điểm A(–3; 2), B(1; 5) và C(3; −1).

Gọi I là tâm đường tròn ngoại tiếp tam giác ABC. Tìm toạ độ của I.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Trong mặt phẳng toạ độ Oxy cho ba điểm A(–3; 2), B(1; 5) và C(3; −1). Gọi I là tâm đường tròn ngoại tiếp tam giác ABC. Tìm toạ độ của I. (ảnh 1)

Theo kết quả phần a) của Bài 4.15, trang 54, Sách Bài tập, Toán 10, tập một ta có:

\(\overrightarrow {AH} = 2\overrightarrow {IM} \) với M là trung điểm của BC.

Giả sử I(a; b) là tọa độ tâm đường tròn ngoại tiếp tam giác ABC

Với A(–3; 2), B(1; 5), C(3; −1), H(0; 3) và I(a; b) ta có:

• \(\overrightarrow {AH} = \left( {3;1} \right)\)

• M là trung điểm của BC nên \(\left\{ \begin{array}{l}{x_M} = \frac{{1 + 3}}{2} = 2\\{y_M} = \frac{{5 + \left( { - 1} \right)}}{2} = 2\end{array} \right.\)

M(2; 2)

\( \Rightarrow \overrightarrow {IM} = \left( {2 - a;2 - b} \right)\)

\( \Rightarrow 2\overrightarrow {IM} = \left( {4 - 2a;4 - 2b} \right)\)

Ta có \(\overrightarrow {AH} = 2\overrightarrow {IM} \)

\( \Leftrightarrow \left\{ \begin{array}{l}3 = 4 - 2a\\1 = 4 - 2b\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}a = \frac{1}{2}\\b = \frac{3}{2}\end{array} \right.\) \( \Rightarrow I\left( {\frac{1}{2};\frac{3}{2}} \right)\)

Vậy tọa độ tâm đường tròn ngoại tiếp tam giác ABC là \(I\left( {\frac{1}{2};\frac{3}{2}} \right).\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

Vì tam giác ABC vuông tại A nên AB ⊥ AC hay \(\overrightarrow {AB} \bot \overrightarrow {AC} \)

Do đó \(\overrightarrow {AB} .\overrightarrow {AC} = 0\)

Giả sử C(x; 0) là điểm thuộc trục hoành.

Với A(2; 1), B(4; 3) và C(x; 0) ta có:

\(\overrightarrow {AB} = \left( {2;2} \right)\) và \(\overrightarrow {AC} = \left( {x - 2; - 1} \right)\)

Khi đó \(\overrightarrow {AB} .\overrightarrow {AC} = 0\) 2(x – 2) + 2(–1) = 0

2x – 4 – 2 = 0

2x = 6

x = 3

Vậy C(3; 0).

\( \Rightarrow \overrightarrow {AC} = \left( {1; - 1} \right)\)

Ta có:

• \(\overrightarrow {AB} = \left( {2;2} \right) \Rightarrow AB = \sqrt {{2^2} + {2^2}} = 2\sqrt 2 \)

• \(\overrightarrow {AC} = \left( {1; - 1} \right) \Rightarrow AC = \sqrt {{1^2} + {{\left( { - 1} \right)}^2}} = \sqrt 2 \)

• \(BC = \sqrt {A{B^2} + A{C^2}} = \sqrt {{{\left( {2\sqrt 2 } \right)}^2} + {{\left( {\sqrt 2 } \right)}^2}} = \sqrt {10} \) (theo định lí Pythagore)

Khi đó chu vi tam giác ABC là:

AB + AC + BC = \(2\sqrt 2 + \sqrt 2 + \sqrt {10} = 3\sqrt 2 + \sqrt {10} \)(đơn vị độ dài)

Diện tích tam giác ABC là:

\(\frac{1}{2}.AB.AC = \frac{1}{2}.2\sqrt 2 .\sqrt 2 = 2\) (đơn vị diện tích)

Lời giải

Lời giải

Trong mặt phẳng toạ độ Oxy cho ba điểm A(–3; 2), B(1; 5) và C(3; −1). Chứng minh rằng A, B, C là ba đỉnh của một tam giác. Tìm toạ độ trọng tâm G của tam giác ấy. (ảnh 1)

Với A(–3; 2), B(1; 5) và C(3; −1) ta có:

\(\overrightarrow {AB} = \left( {4;3} \right)\)và \(\overrightarrow {AC} = \left( {6; - 3} \right)\)

Vì \(\frac{4}{6} = \frac{2}{3} \ne \frac{3}{{ - 3}} = - 1\) nên hai vectơ \(\overrightarrow {AB} \) và \(\overrightarrow {AC} \) không cùng phương

Do đó ba điểm A, B, C không thẳng hàng

Vậy A, B, C là ba đỉnh của một tam giác.

Vì G là trọng tâm của tam giác ABC nên ta có:

\(\left\{ \begin{array}{l}{x_G} = \frac{{ - 3 + 1 + 3}}{3} = \frac{1}{3}\\{y_G} = \frac{{2 + 5 + \left( { - 1} \right)}}{3} = 2\end{array} \right.\) \( \Rightarrow G\left( {\frac{1}{3};2} \right)\)

Vậy tọa độ trọng tâm của tam giác ABC là: \(G\left( {\frac{1}{3};2} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP