Câu hỏi:

11/07/2024 895

Cho tam giác ABC có \(\widehat A < 90^\circ .\) Dựng ra phía ngoài tam giác hai tam giác vuông cân đỉnh A là ABD và ACE. Gọi M, N, P theo thứ tự là trung điểm BC, BD, CE. Chứng minh rằng:

AM vuông góc với DE;

Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Cho tam giác ABC có góc A < 90^0. Dựng ra phía ngoài tam giác hai tam giác vuông cân đỉnh A là ABD và ACE. Gọi M, N, P theo thứ tự là trung điểm BC, BD, CE. Chứng minh rằng:AM v (ảnh 1)

+) Vì M là trung điểm của BC nên \(\overrightarrow {AB} + \overrightarrow {AC} = 2\overrightarrow {AM} \)

\( \Rightarrow \overrightarrow {AM} = \frac{1}{2}\left( {\overrightarrow {AB} + \overrightarrow {AC} } \right)\)

+) Theo quy tắc ba điểm ta có: \(\overrightarrow {DE} = \overrightarrow {AE} - \overrightarrow {AD} \)

\( \Rightarrow \overrightarrow {AM} .\overrightarrow {DE} = \frac{1}{2}\left( {\overrightarrow {AB} + \overrightarrow {AC} } \right)\left( {\overrightarrow {AE} - \overrightarrow {AD} } \right)\)

\[ = \frac{1}{2}\left( {\overrightarrow {AB} .\overrightarrow {AE} - \overrightarrow {AB} .\overrightarrow {AD} + \overrightarrow {AC} .\overrightarrow {AE} - \overrightarrow {AC} .\overrightarrow {AD} } \right)\]

Mà AB ⊥ AD nên \[\overrightarrow {AB} .\overrightarrow {AD} = 0\]

Và AC ⊥ AE nên \[\overrightarrow {AC} .\overrightarrow {AE} = 0\]

Do đó \(\overrightarrow {AM} .\overrightarrow {DE} = \frac{1}{2}\left( {\overrightarrow {AB} .\overrightarrow {AE} - \overrightarrow {AC} .\overrightarrow {AD} } \right)\)

Ta có:

• \(\overrightarrow {AB} .\overrightarrow {AE} = AB.AE.cos\widehat {BAE}\)

Và \[\overrightarrow {AC} .\overrightarrow {AD} = AC.AD.cos\widehat {CAD}\]

• AB = AD (do ∆ABD vuông cân tại A)

Và AC = AE (do ∆ACE vuông cân tại A)

• \(\widehat {BAE} = \widehat {BAC} + \widehat {CAE} = \widehat {BAC} + 90^\circ \)

Và \(\widehat {CAD} = \widehat {BAC} + \widehat {BAD} = \widehat {BAC} + 90^\circ \)

\( \Rightarrow \widehat {BAE} = \widehat {CAD}\)

Do đó \(\overrightarrow {AB} .\overrightarrow {AE} = \overrightarrow {AC} .\overrightarrow {AD} \)

\( \Rightarrow \overrightarrow {AM} .\overrightarrow {DE} = \frac{1}{2}\left( {\overrightarrow {AB} .\overrightarrow {AE} - \overrightarrow {AB} .\overrightarrow {AE} } \right) = 0\)

\( \Rightarrow \overrightarrow {AM} \bot \overrightarrow {DE} \)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Trong mặt phẳng toạ độ Oxy cho hai điểm A(2; 1) và B(4; 3).

Tìm toạ độ của điểm C thuộc trục hoành sao cho tam giác ABC vuông tại A. Tính chu vi và diện tích của tam giác ABC.

Xem đáp án » 11/07/2024 7,118

Câu 2:

Trong mặt phẳng toạ độ Oxy cho ba điểm A(–3; 2), B(1; 5) và C(3; −1).

Chứng minh rằng A, B, C là ba đỉnh của một tam giác. Tìm toạ độ trọng tâm G của tam giác ấy.

Xem đáp án » 11/07/2024 6,543

Câu 3:

Cho hai vectơ \(\overrightarrow a \) và \(\overrightarrow b \) thoả mãn \(\left| {\overrightarrow a } \right| = 6,\left| {\overrightarrow b } \right| = 8\) và \(\left| {\overrightarrow a + \overrightarrow b } \right| = 10.\)

Tính tích vô hướng \(\overrightarrow a .\left( {\overrightarrow a + \overrightarrow b } \right).\)

Xem đáp án » 11/07/2024 4,676

Câu 4:

Trong mặt phẳng toạ độ Oxy cho hai điểm A(1; 4) và C(9; 2) là hai đỉnh của hình vuông ABCD. Tìm toạ độ các đỉnh B, D, biết rằng tung độ của B là một số âm.

Xem đáp án » 11/07/2024 4,592

Câu 5:

Trong mặt phẳng toạ độ Oxy cho hai điểm A(2; 1) và B(4; 3).

Tìm toạ độ của điểm D sao cho tam giác ABD vuông cân tại A.

Xem đáp án » 11/07/2024 4,506

Câu 6:

Cho hai vectơ \(\overrightarrow a \) và \(\overrightarrow b \) thoả mãn \(\left| {\overrightarrow a } \right| = 6,\left| {\overrightarrow b } \right| = 8\) và \(\left| {\overrightarrow a + \overrightarrow b } \right| = 10.\)

Tính số đo của góc giữa hai vectơ \(\overrightarrow a \) và \(\overrightarrow a + \overrightarrow b .\)

Xem đáp án » 11/07/2024 4,067

Câu 7:

Trong mặt phẳng toạ độ Oxy cho ba điểm A(–3; 2), B(1; 5) và C(3; −1).

Tìm toạ độ trực tâm H của tam giác ABC.

Xem đáp án » 11/07/2024 3,673

Bình luận


Bình luận