Câu hỏi:

11/07/2024 1,948

Cho tam giác đều ABC có độ dài các cạnh bằng 1.

Gọi M là trung điểm của BC. Tính tích vô hướng của các cặp vectơ \(\overrightarrow {MA} \) và \(\overrightarrow {BA} ,\) \(\overrightarrow {MA} \) và \(\overrightarrow {AC} .\)

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn sử Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Cho tam giác đều ABC có độ dài các cạnh bằng 1. Gọi M là trung điểm của BC. Tính tích vô hướng của các cặp vectơ vecto MA và  vecto BA, vectoMA (ảnh 1)

Tam giác ABC đều có M là trung điểm của BC nên đường trung tuyến AM đồng thời là đường phân giác và đường cao.

\( \Rightarrow \widehat {BAM} = \widehat {MAC} = \frac{1}{2}\widehat {BAC} = \frac{1}{2}.60^\circ = 30^\circ \)

Gọi Ax là tia đối của tia AM, tia Ay là tia đối của tia AB.

Do đó \(\left( {\overrightarrow {MA} ;\overrightarrow {BA} } \right) = \widehat {xAy} = \widehat {BAM} = 30^\circ \)

\(\left( {\overrightarrow {MA} ;\overrightarrow {AC} } \right) = \widehat {xAC} = 180^\circ - \widehat {MAC}\)

\( \Rightarrow \left( {\overrightarrow {MA} ;\overrightarrow {AC} } \right) = 180^\circ - 30^\circ = 150^\circ \)

Khi đó ta có:

• \(\overrightarrow {MA} .\overrightarrow {BA} = \left| {\overrightarrow {MA} } \right|.\left| {\overrightarrow {BA} } \right|.c{\rm{os}}\left( {\overrightarrow {MA} ;\overrightarrow {BA} } \right)\)

\( \Rightarrow \overrightarrow {MA} .\overrightarrow {BA} = MA.BA.c{\rm{os30}}^\circ \)

Xét tam giác BAM vuông tại M, theo định lí Pythagoras ta có:

\(MA = \sqrt {B{A^2} - B{M^2}} = \sqrt {{1^2} - {{\left( {\frac{1}{2}} \right)}^2}} = \frac{{\sqrt 3 }}{2}\)

\( \Rightarrow \overrightarrow {MA} .\overrightarrow {BA} = \frac{{\sqrt 3 }}{2}.1.\frac{{\sqrt 3 }}{2} = \frac{3}{4}.\)

• \(\overrightarrow {MA} .\overrightarrow {AC} = \left| {\overrightarrow {MA} } \right|.\left| {\overrightarrow {AC} } \right|.c{\rm{os}}\left( {\overrightarrow {MA} ;\overrightarrow {AC} } \right)\)

\( \Rightarrow \overrightarrow {MA} .\overrightarrow {AC} = MA.AC.c{\rm{os150}}^\circ \)

\[ \Rightarrow \overrightarrow {MA} .\overrightarrow {AC} = \frac{{\sqrt 3 }}{2}.1.\frac{{ - \sqrt 3 }}{2} = \frac{{ - 3}}{4}.\]

Vậy \(\overrightarrow {MA} .\overrightarrow {BA} = \frac{3}{4}\) và \(\overrightarrow {MA} .\overrightarrow {AC} = \frac{{ - 3}}{4}.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Trong mặt phẳng toạ độ Oxy cho hai điểm A(2; 1) và B(4; 3).

Tìm toạ độ của điểm C thuộc trục hoành sao cho tam giác ABC vuông tại A. Tính chu vi và diện tích của tam giác ABC.

Xem đáp án » 11/07/2024 6,317

Câu 2:

Trong mặt phẳng toạ độ Oxy cho ba điểm A(–3; 2), B(1; 5) và C(3; −1).

Chứng minh rằng A, B, C là ba đỉnh của một tam giác. Tìm toạ độ trọng tâm G của tam giác ấy.

Xem đáp án » 11/07/2024 5,826

Câu 3:

Trong mặt phẳng toạ độ Oxy cho hai điểm A(1; 4) và C(9; 2) là hai đỉnh của hình vuông ABCD. Tìm toạ độ các đỉnh B, D, biết rằng tung độ của B là một số âm.

Xem đáp án » 11/07/2024 4,225

Câu 4:

Cho hai vectơ \(\overrightarrow a \) và \(\overrightarrow b \) thoả mãn \(\left| {\overrightarrow a } \right| = 6,\left| {\overrightarrow b } \right| = 8\) và \(\left| {\overrightarrow a + \overrightarrow b } \right| = 10.\)

Tính tích vô hướng \(\overrightarrow a .\left( {\overrightarrow a + \overrightarrow b } \right).\)

Xem đáp án » 11/07/2024 3,889

Câu 5:

Cho hai vectơ \(\overrightarrow a \) và \(\overrightarrow b \) thoả mãn \(\left| {\overrightarrow a } \right| = 6,\left| {\overrightarrow b } \right| = 8\) và \(\left| {\overrightarrow a + \overrightarrow b } \right| = 10.\)

Tính số đo của góc giữa hai vectơ \(\overrightarrow a \) và \(\overrightarrow a + \overrightarrow b .\)

Xem đáp án » 11/07/2024 3,851

Câu 6:

Trong mặt phẳng toạ độ Oxy cho hai điểm A(2; 1) và B(4; 3).

Tìm toạ độ của điểm D sao cho tam giác ABD vuông cân tại A.

Xem đáp án » 11/07/2024 3,806

Câu 7:

Trong mặt phẳng toạ độ Oxy cho ba điểm A(–3; 2), B(1; 5) và C(3; −1).

Tìm toạ độ trực tâm H của tam giác ABC.

Xem đáp án » 11/07/2024 3,287

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store