Câu hỏi:

25/07/2022 1,539

Cho tam giác ABC có AB=2BC , từ trung điểm M của AB kẻ tia Mx song song BC, từ C kẻ tia Cy song song AB sao cho Mx cắt Cy tại N.

Gọi G là giao điểm của AE với MN. Chứng minh B, G, F thẳng hàng.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Phương pháp:

Sử dụng dấu hiệu nhận biết và tính chất của hình bình hành, dấu hiệu nhận biết tam giác vuông, chứng minh tam giác bằng nhau và tính chất trọng tâm của tam giác.

Cách giải:

Ta có:ΔADF=ΔCDE (cmt)AF=EC .

CM=AN (AMCN là hình bình hành) và CE=12CMAF=12AN  .

Vậy F là trung điểm AN.

Xét tam giác ABNG là giao của hai đường trung tuyến AENM nên G là trọng tâm của tam giác ABN.

BG đi qua trung điểm F của AN  B, G, F thẳng hàng.

Media VietJack

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Phương pháp:

Áp dụng linh hoạt các kĩ năng để rút gọn biểu thức, sau đó tính giá trị biểu thức.

Phần c sử dụng phương pháp ước số

Cách giải:

 P=2x+4+x+20x216.x4x+5 với x±4,  x5 .

Tính giá trị của biểu thức P, với x thỏa mãn x2+4x=0.

Điều kiện: x±4,  x5 .

Ta có:x2+4x=0xx+4=0x=0x+4=0x=0   tmx=4   ktm.

Thay x=0 thì P=35  .

Lời giải

Phương pháp:

Sử dụng dấu hiệu nhận biết và tính chất của hình bình hành, dấu hiệu nhận biết tam giác vuông, chứng minh tam giác bằng nhau và tính chất trọng tâm của tam giác.

Cách giải:

Tứ giác AMCN có CNAM,  CN=AM=BM

AMCN là hình bình hành (dhnb)

DC=DA,  CMNA. (tính chất)

Xét ΔABC có:

M là trung điểm của AB

MDBCMxCD

 D là trung điểm của AC (định lý đảo).

AD=DC.

Xét ΔADF ΔCDE có:

DA=DC (cmt)

ADF=CDE (hai góc đối đỉnh)

 DAF=DCE (hai góc so le trong)

 ΔADF=ΔCDE (g – c – g) DE=DF (đpcm).
Media VietJack

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP