Câu hỏi:
25/07/2022 497
Cho tam giác ABC cân tại A. Gọi M,N,H theo thứ tự là trung điểm của AB,AC và BC.
Kẻ , gọi K là trung điểm của EC. Qua K vẽ đường thẳng . Chứng minh: Ba đường thẳng AH, MN và d đồng qui (cùng gặp nhau tại 1 điểm)
Câu hỏi trong đề: Bộ 14 đề thi Học kì 1 Toán 8 có đáp án !!
Quảng cáo
Trả lời:
Phương pháp:
Lấy P là trung điểm cạnh ED. Gọi I là giao điểm của MN và AH. Ta sẽ chứng minh
Chỉ ra IAPK là hình bình hành, P là trực tâm tam giác ADK. Từ đó sử dụng quan hệ từ vuông góc đến song song để chứng minh .
Cách giải:
Kẻ , gọi K là trung điểm của EC. Qua K vẽ đường thẳng . Chứng minh: Ba đường thẳng AH, MN và d đồng qui (cùng gặp nhau tại 1 điểm)
Lấy P là trung điểm cạnh ED. Gọi I là giao điểm của MN và AH. Ta sẽ chứng minh
Xét tam giác AHC có và N là trung điểm AC nên I là trung điểm của AH
Suy ra và ; (do ADCH là hình chữ nhật) nên
Xét tam giác EPC có PK là đường trung bình của tam giác ,
Xét tứ giác AIPK có ; nên AIPK là hình bình hành.
Do đó:
Lại có mà
Từ đó suy ra P là trực tâm tam giác ADK.
Suy ra mà nên
Do đó nên ba đường thẳng AH,MN, d đồng qui tại điểm I (đpcm).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Phương pháp:
Tính diện tích phòng học.
Tính diện tích 1 viên gạch.
Tính số viên gạch cần dùng.
Tính giá tiền 1 viên gạch.
Tính số tiền mua gạch.
Cách giải:
Diện tích phòng học là:
Đổi
Diện tích 1 viên gạch là
Số gạch cần dùng đề lát nền là: viên.
Giá tiền 1 viên gạch là: đồng.
Số tiền mua gạch là: đồng.
Lời giải
Phương pháp:
Sử dụng: Tứ giác có hai cạnh đối song song là hình thang.
Hình thang có hai góc ở đáy bằng nhau là hình thang cân.
Tứ giác có cặp cạnh đối song song và bằng nhau là hình bình hành.
Cách giải:
Tứ giác BMNC và tứ giác BMNH là hình gì? Vì sao?
Xét tam giác ABC có MN là đường trung bình của tam giác nên ,
Suy ra là hình thang. Lại có nên MNCB là hình thang cân (dhnb)
Xét tứ giác MNHB có ; nên MNHB là hình bình hành (dhnb)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.