Câu hỏi:

20/01/2020 355

Cho hình chóp S.ABCD có đáy là hình bình hành và có thể tích bằng V. Điểm P là trung điểm của SC, một mặt phẳng qua AP cắt hai cạnh SB SD lần lượt tại M N. Gọi V1 là thể tích của khối chóp S.AMPN Giá trị nhỏ nhất của tỉ số V1V bằng

Đáp án chính xác

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 110k).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Phương pháp:

ABC có AM là trung tuyến, I là điểm bất kì trên đoạn AM, đường thẳng đi qua I cắt AB, AC lần lượt tại E, F.

Khi đó: 

 

Cách giải:

Ta có:

Xét SAC có: 

Dấu "=" xảy ra 

Khi đó 

Vậy V1V đạt giá trị nhỏ nhất bằng 13 khi và chỉ khi a= b = 23

Chọn A.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hình cầu đường kính 2a3. Mặt phẳng (P) cắt hình cầu theo thiết diện là hình tròn có bán kính bằng a2. Tính khoảng cách từ tâm hình cầu đến mặt phẳng (P).

Xem đáp án » 20/01/2020 23,224

Câu 2:

Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật với AB = 3a, AD = 2a. Hình chiếu vuông góc của S lên mặt phẳng (ABCD) là điểm H thuộc cạnh AB sao cho AH=2HB. Góc giữa mặt phẳng (SCD) và mặt phẳng (ABCD) bằng 60°. Khoảng cách từ A đến mặt phẳng (SBC) là:

Xem đáp án » 18/01/2020 19,775

Câu 3:

Cho tứ diện ABCD(ACD)  (BCD), AC = AD = BC = BD = a, CD = 2x . Giá trị của x để hai mặt phẳng (ABC)(ABD) vuông góc với nhau là:

Xem đáp án » 18/01/2020 18,143

Câu 4:

Cho hình hộp ABCD.A'B'C'D' Tính tỉ số thể tích của khối tứ diện BDA'C' và khối hộp ABCD.A'B'C'D'

Xem đáp án » 18/01/2020 15,832

Câu 5:

Cho hình chóp S.ABC có các cạnh SA,SB,SC đôi một vuông góc với nhau. Biết SA = 3, SB = 4, SC  5, thể tích khối chóp S.ABC bằng

Xem đáp án » 18/01/2020 14,040

Câu 6:

Cho hình chóp S.ABCD có đáy là hình thoi tâm O cạnh a và tam giác ABD đều. SO vuông góc mặt phẳng (ABCD) và SO = 2a. M là trung điểm của SD. Tang góc giữa CM và (ABCD) là:

Xem đáp án » 20/01/2020 12,274

Câu 7:

Cho hình chóp tứ giác S.ABCD có đáy là nửa lục giác đều nội tiếp đường tròn đường kính AD = 2a, SA(ABCD). Tính khoảng cách giữa BDSC.

Xem đáp án » 19/01/2020 11,045

Bình luận


Bình luận