Câu hỏi:

12/07/2024 168

Cho ΔABC  là tam giác nhọn, có AM là đường trung tuyến. Trên cạnh AC lấy hai điểm D và E sao cho AD=DE=EC . AM cắt BD tại I.

Trên tia đối của tia CB lấy hai điểm P và Q sao cho CP=PQ=CM . Chứng minh: ME, AP, DQ đồng quy tại một điểm.

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 110k).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Phương pháp:Chứng minh có một điểm đồng thời thuộc cả ba đường thẳng đó.  hay F thuộc DQ.

Media VietJack

Cách giải:

Gọi F=MEAP

Xét ΔAMP có AC là đường trung tuyến, AE=23AC  Þ E là trọng tâm ΔAMP EF=12ME  

EFID(doMEID:cmt);ID=EF=12ME

Þ IDFE là hình bình hành (tứ giác có cặp cạnh đối song song và bằng nhau là hình bình hành)

IEDF(1)

Ta có: BI=34BD  (chứng minh trên); BP=34BQ

IPDQ (định lý Ta-lét đảo trong tam giác)

IP là đường trung tuyến trong  ΔAMP IPIEIEDQ(2)

Từ (1) và (2) DFDQ  hay FDQ

Vậy ME, DQ, AP đồng quy tại F.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Tìm giá trị nhỏ nhất của biểu thức sau: A=2x2+10y26xy6x2y+16

Xem đáp án » 12/07/2024 1,470

Câu 2:

Phân tích các đa thức sau thành nhân tử:x26xy4z2+9y2

Xem đáp án » 13/07/2024 1,072

Câu 3:

Rút gọn các biểu thức sau:x33x+3x23x+9+3x13x+1

Xem đáp án » 13/07/2024 570

Câu 4:

Phân tích các đa thức sau thành nhân tử:xy3x2y+6

Xem đáp án » 12/07/2024 449

Câu 5:

Tìm x:x3+27+x+3x9=0

Xem đáp án » 26/07/2022 431

Câu 6:

Phân tích các đa thức sau thành nhân tử:5x2y325x3y4+10x3y3

Xem đáp án » 11/07/2024 359

Câu 7:

Cho ΔABC  là tam giác nhọn, có AM là đường trung tuyến. Trên cạnh AC lấy hai điểm D và E sao cho AD=DE=EC . AM cắt BD tại I.
Chứng minh: I là trung điểm của AM.

Xem đáp án » 26/07/2022 269

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store