Câu hỏi:

26/07/2022 3,446 Lưu

Miền đa giác ABCD ở Hình 9 là miền nghiệm của hệ bất phương trình:

Miền đa giác ABCD ở Hình 9 là miền nghiệm của hệ bất phương trình: (ảnh 1)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án:

<p>A.&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced open="{" close=""><mtable columnalign="left"><mtr><mtd><mi>x</mi><mo>+</mo><mi>y</mi><mo>&#8804;</mo><mn>4</mn></mtd></mtr><mtr><mtd><mi>x</mi><mo>+</mo><mi>y</mi><mo>&#8805;</mo><mo>&#8722;</mo><mn>1</mn></mtd></mtr><mtr><mtd><mi>x</mi><mo>&#8722;</mo><mi>y</mi><mo>&#8804;</mo><mn>2</mn></mtd></mtr><mtr><mtd><mi>x</mi><mo>&#8722;</mo><mi>y</mi><mo>&#8805;</mo><mo>&#8722;</mo><mn>2</mn></mtd></mtr></mtable></mfenced></math></p>

Đáp án đúng là A

+) Gọi d1 là đường thẳng đi qua hai điểm A và D. Đường thẳng cắt hai trục tọa độ tại hai điểm (– 2; 0) và (0; 2) nên phương trình đường thẳng d là: x2+y2=1xy=2.

Lấy điểm O(0; 0) ta có 0 – 0 = 0 > – 2.

Mà điểm O thuộc miền nghiệm của hệ bất phương trình nên ta có bất phương trình x – y ≥ – 2.

+) Gọi d2 là đường thẳng đi qua hai điểm A và D. Đường thẳng cắt hai trục tọa độ tại hai điểm (4; 0) và (0; 4) nên phương trình đường thẳng d là: x4+y4=1x+y=4.

Lấy điểm O(0; 0) ta có 0 + 0 = 0 < 4.

Mà điểm O thuộc miền nghiệm của hệ bất phương trình nên ta có bất phương trình x + y ≤ 4.

+) Gọi d3 là đường thẳng đi qua hai điểm B và C. Đường thẳng cắt hai trục tọa độ tại hai điểm (2; 0) và (0; – 2) nên phương trình đường thẳng d là: x2+y2=1xy=2.

Lấy điểm O(0; 0) ta có 0 – 0 = 0 < 2.

Mà điểm O thuộc miền nghiệm của hệ bất phương trình nên ta có bất phương trình x – y ≤ 2.

+) Gọi d4 là đường thẳng đi qua hai điểm D và C. Đường thẳng cắt hai trục tọa độ tại hai điểm (– 1; 0) và (0; – 1) nên phương trình đường thẳng d là: x1+y1=1x+y=1.

Lấy điểm O(0; 0) ta có 0 + 0 = 0 > – 1.

Mà điểm O thuộc miền nghiệm của hệ bất phương trình nên ta có bất phương trình x + y ≥ – 1.

Từ đó ta có hệ bất phương trình sau: xy2x+y4xy2x+y1.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là B

Ta xét hệ phương trình: x2y<01x+3y>22x+y<33.

+) Thay x = 1 và y = 0 lần lượt vào các bất phương trình (1), (2) và (3) trong hệ, ta được:

(1) 1 – 2.0 < 0 1 < 0 (vô lí);

(2) 1 + 3.0 > – 2 1 > – 2 (luôn đúng);

(3) – 1 + 0 < 3 – 1 < 3 (luôn đúng).

Do đó cặp số (1; 0) không là nghiệm của hệ bất phương trình đã cho.

+) Thay x = – 1 và y = 0 lần lượt vào các bất phương trình (1), (2) và (3) trong hệ, ta được:

(1) – 1 – 2.0 < 0 – 1 < 0 (luôn đúng);

(2) – 1 + 3.0 > – 2 – 1 > – 2 (luôn đúng);

(3) 1 + 0 < 3 1 < 3 (luôn đúng).

Do đó cặp số (– 1; 0) là nghiệm của hệ bất phương trình đã cho.

+) Thay x = – 2 và y = 3 lần lượt vào các bất phương trình (1), (2) và (3) trong hệ, ta được:

(1) – 2 – 2.3 < 0 – 8 < 0 (luôn đúng);

(2) – 2 + 3.3 > – 2 7 > – 2 (luôn đúng);

(3) 2 + 3 < 3 5 < 3 (vô lí).

Do đó cặp số (– 2; 3) không là nghiệm của hệ bất phương trình đã cho.

+) Thay x = 0 và y = – 1 lần lượt vào các bất phương trình (1), (2) và (3) trong hệ, ta được:

(1) 0 – 2.(– 1) < 0 2 < 0 (vô lí);

(2) 0 + 3.(– 1) > – 2 – 3 > – 2 (vô lí);

(3) 0 + (– 1) < 3 – 1 < 3 (luôn đúng).

Do đó cặp số (0; – 1) không là nghiệm của hệ bất phương trình đã cho.

Vậy (– 1; 0) là nghiệm của hệ phương trình đã cho.

Lời giải

a) Ta vẽ bốn đường thẳng:

d1: x + y = 5 là đường thẳng đi qua hai điểm có tọa độ (0; 5) và (5; 0);

d2: 3x + 2y = 12 là đường thẳng đi qua hai điểm có tọa độ (4; 0) và (0; 6);

d3: x = 1 là đường thẳng song song với trục tung và đi qua điểm (1; 0);

d4: y = 0 là trục hoành.

Ta xác định từng miền nghiệm của từng bất phương trình trong hệ, gạch đi các phần không thuộc miền nghiệm của mỗi bất phương trình.

Miền nghiệm của hệ bất phương trình là miền trong tứ giác ABCD với A(1; 0), B(1; 4), C(2; 3) và D(4; 0) như hình vẽ sau:

a) Biểu diễn miền nghiệm của hệ bất phương trình:  x+y bé hơn bằng 5; 3x+2y bé hơn bằng 12 (ảnh 1)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP