Câu hỏi:

11/07/2024 2,389

Một phân xưởng may áo vest và quần âu để chuẩn bị cho dịp cuối năm. Biết may 1 áo vest hết 2m vải và cần 20 giờ; 1 quần âu hết 1,5 m vải và cần 5 giờ. Xí nghiệp được giao sử dụng không quá 900 m vải và số giờ công không vượt quá 6 000 giờ. Theo khảo sát thị trường, số lượng quần bán ra không nhỏ hơn số lượng áo và không vượt quá 2 lần số lượng áo. Khi xuất ra thị trường, 1 chiếc áo lãi 350 nghìn đồng, 1 chiếc quần lãi 100 nghìn đồng. Phân xưởng cần may bao nhiêu áo vest và quần âu để thu được tiền lãi cao nhất (biết thị trường tiêu thụ luôn đón nhận sản phẩm của xí nghiệp).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Gọi số lượng áo bán ra là x (cái) (x ℕ)

Số lượng quần bán ra là y (cái) (y ℕ).

Số mét vải để may x áo và y quần là: 2x + 1,5y (m).

Vì xí nghiệp được giao sử dụng không quá 900 m vải nên ta có: 2x + 1,5y ≤ 900 (1).

Số giờ để may x áo và y quần là: 20x + 5y (giờ).

Vì số giờ công không vượt quá 6 000 giờ nên ta có: 20x + 5y ≤ 6000 hay 4x + y ≤ 1200 (2).

Theo khảo sát thị trường, ta có:

Số lượng quần bán ra không nhỏ hơn số lượng áo y ≥ x (4)

Số lượng quần không vượt quá 2 lần số lượng áo y ≤ 2x (5)

Từ (1), (2), (3) và (4) nên ta có hệ bất phương trình: 2x+1,5y9004x+y1200yxy2xx0y02x+1,5y9004x+y1200xy02xy0x0y0

Biểu diễn miền nghiệm của hệ bất phương trình là tứ giác OABC với O(0; 0), A(180; 360), B(200; 250), C(240; 240).

Một phân xưởng may áo vest và quần âu để chuẩn bị cho dịp cuối năm. Biết may 1 áo (ảnh 1)

Tiền lãi khi bán x cái áo và y cái quần là 350x + 100y (nghìn đồng).

Đặt T = 350x + 100y.

Ta có biểu thức T = 350x + 100y có giá trị lớn nhất tại một trong các đỉnh của tứ giác OABC.

Tính giá trị biểu thức T tại các đỉnh của tứ giác:

Tại O(0; 0), với x = 0 và y = 0 thì T = 350.0 + 100.0 = 0;

Tại A(180; 360), với x = 180 và y = 360 thì T = 350.180 + 100.360 = 99 000;

Tại B(225; 300), với x = 225 và y = 300 thì T = 350.225 + 100.300 = 108 750;

Tại C(240; 240), với x = 240 và y = 240 thì T = 350.240 + 100.240 = 108 000;

Ta được T đạt giá trị lớn nhất bằng 108 750 000 đồng khi x = 225, y = 300.

Vậy để thu được tiền lãi là cao nhất thì phân xưởng cần may 225 cái áo vest, 300 cái quần âu.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là B

Ta xét hệ phương trình: x2y<01x+3y>22x+y<33.

+) Thay x = 1 và y = 0 lần lượt vào các bất phương trình (1), (2) và (3) trong hệ, ta được:

(1) 1 – 2.0 < 0 1 < 0 (vô lí);

(2) 1 + 3.0 > – 2 1 > – 2 (luôn đúng);

(3) – 1 + 0 < 3 – 1 < 3 (luôn đúng).

Do đó cặp số (1; 0) không là nghiệm của hệ bất phương trình đã cho.

+) Thay x = – 1 và y = 0 lần lượt vào các bất phương trình (1), (2) và (3) trong hệ, ta được:

(1) – 1 – 2.0 < 0 – 1 < 0 (luôn đúng);

(2) – 1 + 3.0 > – 2 – 1 > – 2 (luôn đúng);

(3) 1 + 0 < 3 1 < 3 (luôn đúng).

Do đó cặp số (– 1; 0) là nghiệm của hệ bất phương trình đã cho.

+) Thay x = – 2 và y = 3 lần lượt vào các bất phương trình (1), (2) và (3) trong hệ, ta được:

(1) – 2 – 2.3 < 0 – 8 < 0 (luôn đúng);

(2) – 2 + 3.3 > – 2 7 > – 2 (luôn đúng);

(3) 2 + 3 < 3 5 < 3 (vô lí).

Do đó cặp số (– 2; 3) không là nghiệm của hệ bất phương trình đã cho.

+) Thay x = 0 và y = – 1 lần lượt vào các bất phương trình (1), (2) và (3) trong hệ, ta được:

(1) 0 – 2.(– 1) < 0 2 < 0 (vô lí);

(2) 0 + 3.(– 1) > – 2 – 3 > – 2 (vô lí);

(3) 0 + (– 1) < 3 – 1 < 3 (luôn đúng).

Do đó cặp số (0; – 1) không là nghiệm của hệ bất phương trình đã cho.

Vậy (– 1; 0) là nghiệm của hệ phương trình đã cho.

Lời giải

b) Ta có biểu thức F = 3x + 7y đạt giá trị lớn nhất, giá trị nhỏ nhất tại một trong các đỉnh của tứ giác ABCD.

Tại A(1; 0) với x = 1 và y = 0 thì F = 3.1 + 7.0 = 3;

Tại B(1; 4) với x = 1 và y = 4 thì F = 3.1 + 7.4 = 31;

Tại C(2; 3) với x = 2 và y = 3 thì F = 3.2 + 7.3 = 27;

Tại D(4; 0) với x = 4 và y = 0 thì F = 3.4 + 7.0 = 12.

Vậy giá trị lớn nhất của F là 31 khi x = 1 và y = 4, giá trị nhỏ nhất của F là 3 khi x = 1 và y = 0 .

Câu 3

Miền đa giác ABCD ở Hình 9 là miền nghiệm của hệ bất phương trình:

Miền đa giác ABCD ở Hình 9 là miền nghiệm của hệ bất phương trình: (ảnh 1)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay