Câu hỏi:

20/01/2020 15,837

Cho hình chóp S.ABCD có đáy là hình bình hành và SA = SB = SC = 11, SAB^ = 30°, SBC^ = 60° và SCA^ = =45°. Tính khoảng cách d giữa hai đường thẳng ABSD?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án là D

Do SB = SC = 11 và  do đó BC = 11

Ta lại có, SA = SC = 11 và  vuông cân tại S hay AC = 112

Mặt khác, SA = SB = 11 và 

Từ đó, ta có  suy  ra ABC vuông tại C

Gọi H là trung điểm của AB Khi đó, H là tâm đường tròn ngoại tiếp ABC. Vì SA = SB = SC nên SH(ABC)

Gọi M là điểm trên CD sao cho HMAB suy ra HMCD. Gọi N là chân đường vuông góc hạ từ C xuống AB. Khi đó, HM//CN và HM = CN. Do ABC vuông tại C nên theo công thức tính diện tích ta có:

Ta lại có,  nên 

Trong tam giác vuông SHM dựng đường cao HI(ISM) suy ra HI(SCD). Khi đó,

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn B.

Do AB'//CD' => AB'//(DCC'D'). Suy ra

Câu 2

Lời giải

Đáp án A

Phương pháp:

Thể tích khối lập phương cạnh a là V = a3

Cách giải:

Thể tích khối lập phương canh 2a là V = 2a3 = 8a3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP